In order to investigate the contamination levels of trace metals, surface water samples were collected from six regions along Yangtze River in Nanjing Section. The concentrations of trace metals (As, B, Ba, Be, Cd, Cr, Cu, Fe, Pb, Li, Mn, Mo, Ni, Sb, Se, Sn, Sr, V and Zn) were determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Total concentrations of the metals in the water samples ranged from 825.1 to 950.4 microg/L. The result was compared with international water quality guidelines. Seven metals levels were above the permissible limit as prescribed by guidelines. A preliminary risk assessment was then carried out to determine the human health risk via calculating Hazard Quotient and carcinogenic risk of the metals. Hazard Quotients of all metals were lower than unity, except As. The carcinogenic risk of As and Cd was higher than 10(-6), suggesting that those two metals have potential adverse effects on local residents.
Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T /T c , where T c is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.