Abstract. This paper studies three kinds of long-term behaviour, namely reachability, repeated reachability and persistence, of quantum Markov chains (qMCs). As a stepping-stone, we introduce the notion of bottom strongly connected component (BSCC) of a qMC and develop an algorithm for finding BSCC decompositions of the state space of a qMC. As the major contribution, several (classical) algorithms for computing the reachability, repeated reachability and persistence probabilities of a qMC are presented, and their complexities are analysed.
We formalize the theory of quantum Hoare logic (QHL) [TOPLAS 33(6),19], an extension of Hoare logic for reasoning about quantum programs. In particular, we formalize the syntax and semantics of quantum programs in Isabelle/HOL, write down the rules of quantum Hoare logic, and verify the soundness and completeness of the deduction system for partial correctness of quantum programs. As preliminary work, we formalize some necessary mathematical background in linear algebra, and define tensor products of vectors and matrices on quantum variables. As an application, we verify the correctness of Grover's search algorithm. To our best knowledge, this is the first time a Hoare logic for quantum programs is formalized in an interactive theorem prover, and used to verify the correctness of a nontrivial quantum algorithm.
We introduce the notion of quantum Markov decision process (qMDP) as a semantic model of nondeterministic and concurrent quantum programs. It is shown by examples that qMDPs can be used in analysis of quantum algorithms and protocols. We study various reachability problems of qMDPs both for the finite-horizon and for the infinite-horizon. The (un)decidability and complexity of these problems are settled, or their relationships with certain long-standing open problems are clarified. We also develop an algorithm for finding optimal scheduler that attains the supremum reachability probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.