The aim of the present study was to understand the possible role of the Dihydromyricetin (DHM) in Alzheimer’s disease (AD) rat model through regulation of the AMPK/SIRT1 signaling pathway. Rats were divided into Sham group, AD group, AD + DHM (100 mg/kg) group and AD + DHM (200 mg/kg) group. The spatial learning and memory abilities of rats were assessed by Morris Water Maze. Then, the inflammatory cytokines expressions were determined by radioimmunoassay while expressions of AMPK/SIRT1 pathway-related proteins by Western blot; and the apoptosis of hippocampal cells was detected by TdT-mediated dUTP nick end labeling assay. AD rats had an extended escape latency with decreases in the number of platform crossings, the target quadrant residence time, as well as swimming speed, and the inflammatory cytokines in serum and hippocampus were significantly elevated but AMPK/SIRT1 pathway-related proteins were reduced. Meanwhile, the apoptosis of hippocampal cells was significantly up-regulated with decreased Bcl-2 and increased Bax, as compared with Sham rats (all P<0.05). After AD rats treated with 100 or 200 mg/kg of DHM, the above effects were significantly reversed, resulting in a completely opposite tendency, and especially with 200 mg/kg DHM treatment, the improvement of AD rats was more obvious. DHM exerts protective role in AD via up-regulation of AMPK/SIRT1 pathway to inhibit inflammatory responses and hippocampal cell apoptosis and ameliorate cognitive function.
Ti-6Al-4V alloys with different build orientations have been fabricated by selective laser melting (SLM). The corrosion behavior and mechanical properties have been studied. Investigation of microstructures were characterized by optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Electrochemical results show that the vertical sample and horizontal sample possess excellent corrosion resistance in the cross section and longitudinal section respectively, which can be attributed to the presence of less acicular α′ martensite and more β phase. Mechanical properties of all samples were determined by compression testing and hardness measurements. The compression strength (σc) and plastic deformation (εp) of the horizontal sample were higher than those of the vertical sample and the sample with building direction of 45°, because the molten pool boundaries (MPBs) play a significant role in the microscopic slipping at the loading SLM parts. In addition, the sample with building orientation of 45° achieved highest hardness. Therefore, distinct anisotropy due to different build orientations.
Abstract:In recent years, CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. %) and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA) of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr 2 and Cu 10 Zr 7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.