The hydro-mechanical continuously variable transmission (HMCVT) is a critical component of the power transmission system in a tractor. However, the complexity of the operating conditions imposes high requirements on the transmission characteristics. To improve the powerful performance and economy of HMCVTs and satisfy the operational demands of high-powered tractors, a new optimization design method for the characteristic parameters of an HMCVT is proposed. First, the characteristics of an HMCVT are modeled, and the influence of the structural parameters on the transmission characteristics is analyzed. Then, HMCVT performance evaluation indexes are formulated. In accordance with the speed regulation of system, power performance, and economy characteristics, a multi-objective optimization mathematical model is established, and an improved fast non-dominated sorting genetic algorithm (INSGA-II) is designed. The introduction of a normal distribution crossover operator (NDX) and an improved adaptive adjustment mutation operator not only ensures the population diversity but also improves the Pareto solution convergence properties during the process of genetic evolution. The superiority of INSGA-II is verified by comparison with a traditional multi-objective genetic algorithm. Finally, the optimization results show that the torque ratio is increased by approximately 2.81%, 14.32%, 2.31%, and 15.07% in HM1, HM2, HM3, and HM4 respectively. The transmission efficiency is increased by approximately 3.48% and 1.97% in HM1 (HM3) and HM2 (HM4). Also, INSGA-II finds the optimal solution with a faster speed and shorter optimization time than MULGA. This research can serve as a reference for the design and optimization of HMCVTs for high-powered tractors.
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.