Diabetic renal injury was associated with dysbiosis of the gut microbiota and intestinal barrier. Punicalagin (PU) from pomegranates potentially impacts the microbial ecosystem, intestinal barrier, and renal function. Therefore, we...
Punicalagin exerts neuroprotective activity by improving AMP-activated kinase (AMPK) and mitochondrial Krebs cycle. AMPK and Krebs cycle metabolites regulate 5-hydroxymethylcytosine (5hmC) via acting on ten-eleven translocation (TET) enzymes. Therefore, we hypothesized that punicalagin inhibits diabetes-related neuronal apoptosis by upregulating 5hmC in the diabetic mouse brain. C57BL/6J mice aged 8 weeks were randomly separated into five groups (n = 10), normal control (NC), diabetes mellitus (DM), resveratrol (RES), low-dose punicalagin (LPU), and high-dose punicalagin (HPU). Compared with other groups, the neuronal apoptosis rate was significantly higher and the 5hmC level of the cerebral cortex was significantly lower in the DM group. The levels of TET2 and P-AMPKα/AMPKα were significantly lower in the DM group than in both LPU and HPU groups. The ratio of (succinic acid + fumaric acid)/α-ketoglutarate was significantly higher in the DM group than in other groups. The present results suggest that punicalagin upregulates 5hmC via activating AMPK and maintaining Krebs cycle homeostasis, thus inhibiting neuronal apoptosis in the diabetic mouse brain.
It is well known that fat dysfunction is the main driver for development of metabolic disorders. Changes in diet and lifestyle are particularly important to reverse the current global rise...
Background: 5-Hydroxymethylcytosine (5hmC) is an epigenetic DNA modification that is highly abundant in central nervous system. It has been reported that DNA 5hmC dysregulation play a critical role in Alzheimer’s disease (AD) pathology. Changes in 5hmC signatures can be detected in circulating cell-free DNA (cfDNA), which has shown potential as a non-invasive liquid biopsy material. Objective: However, the genome-wide profiling of 5hmC in cfDNA and its potential for the diagnosis of AD has not been reported to date. Methods: We carried out a case-control study and used a genome-wide chemical capture followed by high-throughput sequencing to detect the genome-wide profiles of 5hmC in human cfDNA and identified differentially hydroxymethylated regions (DhMRs) in late-onset AD patients and the control. Results: We discovered significant differences of 5hmC enrichment in gene bodies which were linked to multiple AD pathogenesis-associated signaling pathways in AD patients compared with cognitively normal controls, indicating they can be well distinguished from normal controls by DhMRs in cfDNA. Specially, we identified 7 distinct genes (RABEP1, CPNE4, DNAJC15, REEP3, ROR1, CAMK1D, and RBFOX1) with predicting diagnostic potential based on their significant correlations with MMSE and MoCA scores of subjects. Conclusion: The present results suggest that 5hmC markers derived from plasma cfDNA can served as an effective, minimally invasive biomarkers for clinical auxiliary diagnosis of late-onset AD.
Ellagic acid (EA) improves mitochondrial dysfunction and protects diabetic hearts. The mitochondrial tricarboxylic acid (TCA) cycle regulates DNA 5-hydroxymethylcytosine (5hmC) levels by affecting activity of 10−11 translocation enzymes (TETs). Therefore, we hypothesized that EA prevents diabetic cardiac dysfunction by modulating DNA 5hmC levels. C57BL/6J mice were fed a high-fat diet to induce diabetes and treated with EA (100 mg kg −1 day −1 ) for 8 weeks. Serum concentrations of glucose, insulin, and triglyceride and aspartate transaminase and creatine kinase activities were significantly lower in the EA group than the diabetes mellitus (DM) group. DNA 5hmC levels of mice hearts were significantly higher in the EA group than the DM group. The protein levels of TET, complexes I/III/V were significantly higher in the EA group than the DM group. The results shows that EA has a preventive effect on diabetic cardiac dysfunction, which may be achieved by upregulating TET activity through improving the TCA cycle, to reshape DNA 5hmC levels of mice hearts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.