Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane, and perform precise hovering flight. Further, most birds can utilize tails and muscles in wings to actively control the flight performance, while insects control their flight with muscles based on wing root along with wing’s passive deformation. Based on the above flight principles of birds and insects, Flapping Wing Micro Air Vehicles (FWMAVs) are classified as either bird-inspired or insect-inspired FWMAVs. In this review, the research achievements on mechanisms of insect-inspired, hoverable FWMAVs over the last ten years (2011–2020) are provided. We also provide the definition, function, research status and development prospect of hoverable FWMAVs. Then discuss it from three aspects: bio-inspiration, motor-driving mechanisms and intelligent actuator-driving mechanisms. Following this, research groups involved in insect-inspired, hoverable FWMAV research and their major achievements are summarized and classified in tables. Problems, trends and challenges about the mechanism are compiled and presented. Finally, this paper presents conclusions about research on mechanical structure, and the future is discussed to enable further research interests.
Allomyrina dichotoma has a natural ultra-high flying ability and maneuverability. Especially its ability to fly flexibly in the air, makes it more adaptable to the harsh ecological environment. In this study, a bionic flapping-wing micro air vehicle (FMAV) is designed and fabricated by mimicking the flight mode of A. dichotoma. Parametric design was employed for combining the airframe structure and flight characteristics analysis. To improve the transmission efficiency and compactness of the FMAV mechanisms, this study first analyses the body structure of A. dichotoma, and then proposes a novel mechanism of FMAV based on its biological motion characteristics, the flight motion characteristics, and its musculoskeletal system. By optimizing the flapping-wing mechanism and mimicking the flying mechanism of A. dichotoma, the large angle amplitude and the high-frequency flapping motion can be achieved to generate more aerodynamic force. Meanwhile, to improve the bionic effect and the wing performance of FMAV, the flexible deformation of A. dichotoma wings for each flapping period was observed by a high-speed camera. Furthermore, the bionic design of wings the prototype was carried out, therefore the wings can generate a high lift force in the flapping process. The experiment demonstrated that the aircraft can achieve a flapping angle of 160 degrees and 30 Hz flapping frequency. The attitude change of FMAV is realized by mimicking the movement for the change of attitude of the A. dichotoma, by changing the angle of attack of the wing, and executing the flight action of multiple degrees of freedom including pitch, roll and yaw. Finally, the aerodynamic experiment demonstrated that the prototype can offer 27.8 g lift and enough torque for altitude adjustment.
Robust and antibacterial dental resin is essential for repairing the shape and function of the teeth. However, an ingenious way to achieve the synergistic enhancement of these two properties is...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.