Multi-step micromechanics-based models are developed to predict the overall effective elastic moduli of porous ceramic with randomly oriented carbon nanotube (CNT) reinforcements. The presence of porosity in the ceramic matrix that has been previously neglected in the literature is considered in present analysis. The ceramic matrix with porosity is first homogenized using a classical Mori-Tanaka model. Then, the homogenized porous ceramic matrix with randomly oriented CNTs is analysed using two micromechanics models. The results predicted by the present models are compared with experimental and analytical results that have been reported in literature. The comparison shows that the discrepancies between the present analytical results and experimental data are about 10% for 4 wt% of CNTs and about 0.5% for 8 wt% CNTs, both substantially lower than the discrepancies currently reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.