We theoretically investigate high-order harmonic generation (HHG) from solids in two-color fields. It is found that under the premise of maintaining the same amplitude, the intensity of the second plateau can be enhanced by two to three orders in a proper two-color field compared with the result in the monochromatic field with the same frequency as the driving pulse of the two-color field. This can be attributed to the fact that most excited electrons can be driven to the top of the first conduction band due to the larger vector potential of the two-color fields, which leads to the higher electron population of upper conduction bands. Moreover, we also find that isolated attosecond pulses can be generated from solids by choosing a proper two-color field that allows the electrons to reach the top of the first conduction band only once. This work provides a promising method for extending the range of solid HHG spectra in experiments.
Photoelectron angular momentum distribution of He+ driven by a few-cycle laser is investigated numerically. We simultaneously observe two dominant interference patterns with one shot of lasers by solving the 3D time-dependent Schrodinger equation. Analysis of a semiclassical model identifies these two interference patterns as two types of photoelectron holography. The interference pattern with Pz>0 is a type of forward rescattering holography, which comes from the interference between direct (reference) and rescattered (signal) forward electrons ionized in the same quarter-cycle. The interference pattern with Pz<0 is a type of backward rescattering holography, which comes from the interference between a direct electron ionized in the third quarter-cycle and rescattered backward electron ionized in the first quarter-cycle. Moreover, we propose a method to distinguish this backward rescattering holography and intracycle interference patterns of direct electrons.
We theoretically study the high-order harmonic generation of H and its isotopes beyond the Born-Oppenheimer dynamics. It is surprising that the spectral redshift can still be observed in high harmonic spectra of H driven by a sinusoidal laser pulse in which the trailing (leading) edge of the laser pulse is nonexistent. The results confirm that this spectral redshift originates from the reduction in ionization energy between recombination time and ionization time, which is obviously different from the nonadiabatic spectral redshift induced by the falling edge of the laser pulse. Additionally, the improved instantaneous frequency of harmonics by considering the changeable ionization energy can deeply verify our results. Therefore, this new mechanism must be taken into account when one uses the nonadiabatic spectral redshift to retrieve the nuclear motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.