Due to their excellent size, designability, and outstanding targeted antibacterial effects, nanoparticles have become a potential option for controlling oral biofilm‐related infections. However, the formation of an oral biofilm is a dynamic process, and factors affecting the performance of antibiofilm treatments are complex. As such, when examining the existing literature on the antibiofilm effects of nanoparticles, attention should be paid to the specific mechanisms of action at different stages of oral biofilm formation, as well as relevant influencing factors, in order to achieve an objective and comprehensive evaluation. This review is intended to detail the antibacterial mechanisms of nanoparticles during the four stages of the formation of oral biofilms: 1) acquired film formation; 2) bacterial adhesion; 3) early biofilm development; and 4) biofilm maturation. In addition, factors influencing the antibiofilm properties of nanoparticles are summarized from the aspects of nanoparticles themselves, biofilm models, and host factors. The limitations of current research and possible trends for future research are also discussed. In summary, nanoparticles are a promising antioral biofilm strategy. It is hoped that this review can serve as a reference and inspire ideas for further research on the application of nanoparticles for effectively targeting and treating oral biofilms.
A statistical study of ion upflow and field-aligned currents (FACs) has been performed in the topside ionosphere of both hemispheres for magnetic quiet and disturbed times by using DMSP satellite observations from 2010-2013. Distributions in MLT/MLat reveal that ion upflow occurrence shows a dawn-dusk asymmetry distribution that matches well with the Region 1 FACs. In addition, there are highest occurrence regions near noon and within the midnight auroral disturbance area, corresponding to dayside cusp and nightside auroral disturbance regions, respectively. Both the ion upflow occurrence and FAC regions expand equatorward to a wider area during disturbed times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.