Inspired by origami art, we demonstrate a tubular microsupercapacitor (TMSC) by self-assembling two-dimensional (2D) films into a "swiss roll" structure with greatly reduced footprint area. A polymeric framework consisting of swelling hydrogel and polyimide layers ensures excellent ion transport between poly(3,4-ethylenedioxythiophene) (PEDOT)-based electrodes and provides efficient self-protection of the TMSC against external compression up to about 30 MPa. Such TMSCs exhibit an areal capacitance of 82.5 mF cm −2 at 0.3 mA cm −2 with a potential window of 0.8 V, an energy density and power density of 7.73 μWh cm −2 and 17.8 mW cm −2 (0.3 and 45 mA cm −2 ), and an improved cycling stability with a capacitance retention up to 96.6% over 5000 cycles. Furthermore, asfabricated TMSC arrays can be detached from their surface and transferred onto target substrates. The connection of devices in parallel/series greatly improves their capacity and voltage output. Overall, our prototype devices and fabrication methodology provide a promising route to create integratable microscale tubular energy storage devices with an efficient self-protection function and high performance for future miniaturized electronics.
Ultrathin Cu(In,Ga)Se (CIGSe) solar cells pose challenges of incomplete absorption and back contact recombination. In this work, we applied the simple collodial nanosphere lithography and fabricated 2D SiO nanomeshes (NMs), which simultaneously benefit ultrathin CIGSe solar cells electrically and optically. Electrically, the NMs are capable of passivating the back contact recombination and increasing the minimum bandgap of absorbers. Optically, the parasitic absorption in Mo as a main optical loss is reduced. Consequently, the SiO NMs give rise to an increase of 3.5 mA/cm in short circuit current density (J) and of 57 mV in open circuit voltage increase (V), leading to an absolute efficiency enhancement as high as 2.6% (relatively 30%) for CIGSe solar cells with an absorber thickness of only 370 nm and a steep back Ga/[Ga + In] grading.
Manipulating Ag nanowire (AgNW) assembly to tailor the opto-electrical properties and surface morphology could improve the performance of next-generation transparent conductive electrodes. In this paper, we demonstrated a water-bath assisted convective assembly process at the temporary water/alcohol interface for fabricating hierarchical aligned AgNW electrodes. The convection flow plays an important role during the assembly process. The assembled AgNW film fabricated via three times orthogonal dip-coating at a water-bath temperature of 80 °C has a sheet resistance of 11.4 Ω sq(-1) with 89.9% transmittance at 550 nm. Moreover, the root mean square (RMS) of this assembled AgNW film was only 15.6 nm which is much lower than the spin-coated random AgNW film (37.6 nm) with a similar sheet resistance. This facile assembly route provides a new way for manufacturing and tailoring ordered nanowire-based devices.
High performance, flexibility, safety, and robust integration for micro-supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy-storage devices. However, repetitive photolithography processes in the fabrication of on-chip electronic components including various photoresists, masks, and toxic etchants are often not well-suited for industrial production. Here, a cost-effective stamping strategy is developed for scalable and rapid preparation of graphene-based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm −2 at a current of 0.5 mA and a high power density of 6 mW cm −2 at an energy density of 5 µWh cm −2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10 000 charge-discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well-defined arrangements. The efficient, rapid manufacturing of the graphene-based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.