High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.
Knowledge of the interactions between nanomaterials and large-size mammalian cells, including cellular uptake, intracellular localization and translocation, has greatly advanced nanomedicine and nanotoxicology. Imaging techniques that can locate nanomaterials within the structures of intact large-size cells at nanoscale resolution play crucial roles in acquiring this knowledge. Here, the quantitative imaging of intracellular nanomaterials in three dimensions was performed by combining dual-energy contrast X-ray microscopy and an iterative tomographic algorithm termed equally sloped tomography (EST). Macrophages with a size of $20 mm that had been exposed to the potential antitumour agent [Gd@C 82 (OH) 22 ] n were investigated. Large numbers of nanoparticles (NPs) aggregated within the cell and were mainly located in phagosomes. No NPs were observed in the nucleus. Imaging of the nanomedicine within whole cells advanced the understanding of the highefficiency antitumour activity and the low toxicity of this agent. This imaging technique can be used to probe nanomaterials within intact large-size cells at nanometre resolution uniformly in three dimensions and may greatly benefit the fields of nanomedicine and nanotoxicology.
When and under what circumstances domestication related traits evolved in soybean (Glycine max) is not well understood. Seed size has been a focus of archaeological attention because increased soybean seed weight/size is a trait that distinguishes most modern soybeans from their ancestors; however, archaeological seed size analysis has had limited success. Modern domesticated soybean has a significantly higher oil content than its wild counterpart so oil content is potentially a source of new insight into soybean domestication. We investigated soybean oil content using X-ray computed tomography (CT; specifically, synchrotron radiation X-ray CT or SRX-CT) of charred, archaeological soybean seeds. CT identified holes in the specimens that are associated with oil content. A high oil content facilitates the development of small holes, whereas a high protein content results in larger holes. The volume of small holes increased slowly from 7,500 to 4,000 cal B.P. We infer that human selection for higher oil content began as early as 7,500 cal B.P. and that high oil content cultivars were well established by 4,000 cal B.P.
The
development of three-dimensional (3D) single-cell imaging and
protein quantitative methods can provide more comprehensive information
for diagnoses. We report the design and synthesis of a multisignal
nanoprobe (AuGdNC@BSA-CV) for single-cell 3D imaging and
quantifying the integrin αIIbβ3 using
correlated synchrotron radiation soft X-ray tomography microscopy
and an iterative tomographic algorithm termed equally sloped tomography
for the first time. Moreover, on the basis of the Au or Gd content
of our nanoprobe, the number of integrin αIIbβ3 on a single cell also can be accurately quantified (1.5 ×
107 per cell) via inductively coupled plasma mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.