Ferroelectric nanowires have attracted great attention due to their excellent physical properties. We report the domain structure, ferroelectric, piezoelectric, and conductive properties of bismuth ferrite (BFO, short for BiFeO3) nanowires characterized by scanning probe microscopy (SPM). The X-ray diffraction (XRD) pattern presents single phase BFO without other obvious impurities. The piezoresponse force microscopy (PFM) results indicate that the nanowires possess a multidomain configuration, and the maximum piezoelectric coefficient (d33) of single BFO nanowire is 22.21 pm/V. Poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) demonstrate that there is sufficient polarization switching behavior and obvious piezoelectric properties in BFO nanowires. The conducting atomic force microscopy (C-AFM) results show that the current is just hundreds of pA at 8 V. These lay the foundation for the application of BFO nanowires in nanodevices.
Due to the high energy, narrow distribution and breaking through the absorption limitation, plasmon induced hot electrons has been widely applied to extend the photoresponse spectra of the semiconductor. In order to further enhance the resonance effect of local plasmon based on metallic nanostructures, we used hydro uoric stain etching method to fabricate nanostructured black silicon (BSi) and deposited titanium nitride (TiN) nanoparticles on its surface by reactive magnetron-sputtering. The results show that the BSi modi ed by plasmonic TiN nanoparticles has higher absorption in wavelength range from 1100 to 2500 nm compared to that of conventional acid etching of BSi. A PIN photoelectronic detector fabricated by the proposed BSi shows excellent device performance with responsivity of 0.45A/W at 1060 nm in near infrared band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.