In this paper, we present a bilevel optimal motion planning (BOMP) model for autonomous parking. The BOMP model treats motion planning as an optimal control problem, in which the upper level is designed for vehicle nonlinear dynamics, and the lower level is for geometry collision-free constraints. The significant feature of the BOMP model is that the lower level is a linear programming problem that serves as a constraint for the upper-level problem. That is, an optimal control problem contains an embedded optimization problem as constraints. Traditional optimal control methods cannot solve the BOMP problem directly. Therefore, the modified approximate Karush-Kuhn-Tucker theory is applied to generate a general nonlinear optimal control problem. Then the pseudospectral optimal control method solves the converted problem. Particularly, the lower level is the J 2-function that acts as a distance function between convex polyhedron objects. Polyhedrons can approximate objects in higher precision than spheres or ellipsoids. As a result, a fast high-precision BOMP algorithm for autonomous parking concerning dynamical feasibility and collision-free property is proposed. Simulation results and experiment on Turtlebot3 validate the BOMP model, and demonstrate that the computation speed increases almost two orders of magnitude compared with the area criterion based collision avoidance method. Keywords Autonomous parking • Optimal control • Bilevel optimal motion planning (BOMP) • J 2-function * Youlun Xiong
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.