In recent years, many new technologies have been used in indoor positioning. In 2016, IEEE 802.11-2016 created a Wi-Fi fine timing measurement (FTM) protocol, making Wi-Fi ranging more robust and accurate, and providing meter-level positioning accuracy. However, the accuracy of positioning methods based on the new ranging technology is influenced by non-line-of-sight (NLOS) errors. To enhance the accuracy, a positioning method with LOS (line-of-sight)/NLOS identification is proposed in this paper. A Gaussian model has been established to identify NLOS signals. After identifying and discarding NLOS signals, the least square (LS) algorithm is used to calculate the location. The results of the numerical experiments indicate that our algorithm can identify and discard NLOS signals with a precision of 83.01% and a recall of 74.97%. Moreover, compared with the traditional algorithms, by all ranging results, the proposed method features more accurate and stable results for indoor positioning.
The smartphone-based Wi-Fi fine time measurement (FTM) technique has provided a new approach for Wi-Fi-based indoor location on mobile phones since the 2018 release of the Google Android Pie system, which supports the IEEE 802.11-2016 protocol and can directly measure the distance between the initiator and the responder. This paper studies in detail the properties of mobile phone Wi-Fi ranging and positioning performance. Considering non-line-of-sight (NLOS) error identification, a real-time ranging error compensation model based on the least-squares (LS) method and an adaptive Wi-Fi FTM positioning algorithm (AWFP) utilizing the weighted least-squares (WLS) method are devised. To improve accuracy, a new tightly coupled fusion positioning algorithm integrating Wi-Fi FTM and built-in mobile phone sensors based on the extended Kalman filter (EKF) is constructed. The experimental results show that the ranging precision and Wi-Fi positioning accuracy are improved. Based on the high-precision Wi-Fi ranging and positioning results, the final location accuracy of the proposed fusion method is 0.98 m, and the root-meansquare error (RMSE) is 1.10 m, which are better than those of the PDR, Wi-Fi FTM and loosely coupled PDR/Wi-Fi FTM integration based on the EKF. INDEX TERMS Indoor positioning, Wi-Fi FTM, pedestrian dead reckoning, tightly coupled, ekf.
The radio map construction is usually time-consuming and labor-sensitive in indoor fingerprinting localization. We propose a fast construction method by using an adaptive path loss model interpolation. Received signal strength (RSS) fingerprints are collected at sparse reference points by using multiple smartphones based on crowdsourcing. Then, the path loss model of an access point (AP) can be built with several reference points by the least squares method in a small area. Afterwards, the RSS value can be calculated based on the constructed model and corresponding AP’s location. In the small area, all models of detectable APs can be built. The corresponding RSS values can be estimated at each interpolated point for forming the interpolated fingerprints considering RSS loss, RSS noise and RSS threshold. Through combining all interpolated and sparse reference fingerprints, the radio map of the whole area can be obtained. Experiments are conducted in corridors with a length of 211 m. To evaluate the performance of RSS estimation and positioning accuracy, inverse distance weighted and Kriging interpolation methods are introduced for comparing with the proposed method. Experimental results show that our proposed method can achieve the same positioning accuracy as complete manual radio map even with the interval of 9.6 m, reducing 85% efforts and time of construction.
This paper proposes a fusion indoor positioning method that integrates the pedestrian dead-reckoning (PDR) and geomagnetic positioning by using the genetic-particle filter (GPF) algorithm. In the PDR module, the Mahony complementary filter (MCF) algorithm is adopted to estimate the heading angles. To improve geomagnetic positioning accuracy and geomagnetic fingerprint specificity, the geomagnetic multi-features positioning algorithm is devised and five geomagnetic features are extracted as the single-point fingerprint by transforming the magnetic field data into the geographic coordinate system (GCS). Then, an optimization mechanism is designed by using gene mutation and the method of reconstructing a particle set to ameliorate the particle degradation problem in the GPF algorithm, which is used for fusion positioning. Several experiments are conducted to evaluate the performance of the proposed methods. The experiment results show that the average positioning error of the proposed method is 1.72 m and the root mean square error (RMSE) is 1.89 m. The positioning precision and stability are improved compared with the PDR method, geomagnetic positioning, and the fusion-positioning method based on the classic particle filter (PF).
The human body has a great influence on Wi-Fi signal power. A fixed K value leads to localization errors for the K-nearest neighbor (KNN) algorithm. To address these problems, we present an adaptive weighted KNN positioning method based on an omnidirectional fingerprint database (ODFD) and twice affinity propagation clustering. Firstly, an OFPD is proposed to alleviate body’s sheltering impact on signal, which includes position, orientation and the sequence of mean received signal strength (RSS) at each reference point (RP). Secondly, affinity propagation clustering (APC) algorithm is introduced on the offline stage based on the fusion of signal-domain distance and position-domain distance. Finally, adaptive weighted KNN algorithm based on APC is proposed for estimating user’s position during online stage. K initial RPs can be obtained by KNN, then they are clustered by APC algorithm based on their position-domain distances. The most probable sub-cluster is reserved by the comparison of RPs’ number and signal-domain distance between sub-cluster center and the online RSS readings. The weighted average coordinates in the remaining sub-cluster can be estimated. We have implemented the proposed method with the mean error of 2.2 m, the root mean square error of 1.5 m. Experimental results show that our proposed method outperforms traditional fingerprinting methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.