Background: A microarray study may select different differentially expressed gene sets because of different selection criteria. For example, the fold-change and p-value are two commonly known criteria to select differentially expressed genes under two experimental conditions. These two selection criteria often result in incompatible selected gene sets. Also, in a two-factor, say, treatment by time experiment, the investigator may be interested in one gene list that responds to both treatment and time effects.
This article considers a class of multiresolution tree-structured models that are spatially shifted versions of each other and proposes a new spatial-prediction method that averages over the optimal spatial predictors produced from members of this class of models. As a consequence, the resulting predicted surface is smooth, even when the predictors generated separately from individual multiresolution treestructured models are not. We call the new predictor the multiresolution spatial (MURS) predictor and develop a computationally efficient algorithm for it. The algorithm can handle massive datasets even when some observations are missing. Moreover, the MURS predictor can be shown to be the minimum mean squared error predictor for a large class of covariance functions. A simulation example for massive datasets shows that the MURS method consistently outperforms two commonly used filtering methods. Total column ozone data remotely sensed from a satellite are analyzed using the new methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.