Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (microbiome) and individual variations in the microbiome influence host health, may be implicated in disease etiology, and affect drug metabolism, toxicity, and efficacy. However, the molecular basis of these microbe-host interactions and the roles of individual bacterial species are obscure. We now demonstrate a''transgenomic'' approach to link gut microbiome and metabolic phenotype (metabotype) variation. We have used a combination of spectroscopic, microbiomic, and multivariate statistical tools to analyze fecal and urinary samples from seven Chinese individuals (sampled twice) and to model the microbialhost metabolic connectivities. At the species level, we found structural differences in the Chinese family gut microbiomes and those reported for American volunteers, which is consistent with population microbial cometabolic differences reported in epidemiological studies. We also introduce the concept of functional metagenomics, defined as ''the characterization of key functional members of the microbiome that most influence host metabolism and hence health.'' For example, Faecalibacterium prausnitzii population variation is associated with modulation of eight urinary metabolites of diverse structure, indicating that this species is a highly functionally active member of the microbiome, influencing numerous host pathways. Other species were identified showing different and varied metabolic interactions. Our approach for understanding the dynamic basis of host-microbiome symbiosis provides a foundation for the development of functional metagenomics as a probe of systemic effects of drugs and diet that are of relevance to personal and public health care solutions. covariation analysis ͉ gut microbiota ͉ metabonomics ͉ metabotype ͉ metagenomics
Recently increasing reported data have suggested that only a small subset of cancer cells possess capability to initiate malignancies including leukemia and solid tumors, which was based on investigation in these cells displaying a distinct surface marker pattern within the primary cancers. CD133 is a putative hematopoietic and neuronal stem-cell marker, which was also considered as a tumorigenic marker in brain and prostate cancer. We hypothesized that CD133 was a marker closely correlated with tumorigenicity, since it was reported that CD133 expressed in human fetal liver and repairing liver tissues, which tightly associated with hepatocarcinogenesis. Our findings showed that a small population of CD133 positive cells indeed exists in human hepatocellular carcinoma (HCC) cell lines and primary HCC tissues. From SMMC-7721 cell line, CD133 1 cells isolated by MACS manifested high tumorigenecity and clonogenicity as compared with CD133 2 HCC cells. The implication that CD133 might be one of the markers for HCC cancer stem-like cells needed further investigation. ' 2007 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.