Recently increasing reported data have suggested that only a small subset of cancer cells possess capability to initiate malignancies including leukemia and solid tumors, which was based on investigation in these cells displaying a distinct surface marker pattern within the primary cancers. CD133 is a putative hematopoietic and neuronal stem-cell marker, which was also considered as a tumorigenic marker in brain and prostate cancer. We hypothesized that CD133 was a marker closely correlated with tumorigenicity, since it was reported that CD133 expressed in human fetal liver and repairing liver tissues, which tightly associated with hepatocarcinogenesis. Our findings showed that a small population of CD133 positive cells indeed exists in human hepatocellular carcinoma (HCC) cell lines and primary HCC tissues. From SMMC-7721 cell line, CD133 1 cells isolated by MACS manifested high tumorigenecity and clonogenicity as compared with CD133 2 HCC cells. The implication that CD133 might be one of the markers for HCC cancer stem-like cells needed further investigation. ' 2007 Wiley-Liss, Inc.
Tumor‐associated macrophages (TAMs) are recognized as antitumor suppressors, but how TAMs behave in the hypoxic environment of hepatocellular carcinoma (HCC) remains unclear. Here, we demonstrated that hypoxia inducible factor 1α induced increased expression of triggering receptor expressed on myeloid cells‐1 (TREM‐1) in TAMs, resulting in immunosuppression. Specifically, TREM‐1‐positive (TREM‐1+) TAMs abundant at advanced stages of HCC progression indirectly impaired the cytotoxic functions of CD8+ T cells and induced CD8+ T‐cells apoptosis. Biological and functional assays showed that TREM‐1+ TAMs had higher expression of programmed cell death ligand 1 (PD‐L1) under hypoxic environment. However, TREM‐1+ TAMs could abrogate spontaneous and PD‐L1‐blockade‐mediated antitumor effects in vivo, suggesting that TREM‐1+ TAM‐induced immunosuppression was dependent on a pathway separate from PD‐L1/programmed cell death 1 axis. Moreover, TREM‐1+ TAM‐associated regulatory T cells (Tregs) were crucial for HCC resistance to anti‐PD‐L1 therapy. Mechanistically, TREM‐1+ TAMs elevated chemokine (C‐C motif) ligand 20 expression through the extracellular signal‐regulated kinase/NF‐κβ pathway in response to hypoxia and tumor metabolites leading to CCR6+Foxp3+ Treg accumulation. Blocking the TREM‐1 pathway could significantly inhibit tumor progression, reduce CCR6+Foxp3+ Treg recruitment, and improve the therapeutic efficacy of PD‐L1 blockade. Thus, these data demonstrated that CCR6+Foxp3+ Treg recruitment was crucial for TREM‐1+ TAM‐mediated anti‐PD‐L1 resistance and immunosuppression in hypoxic tumor environment. Conclusion: This study highlighted that the hypoxic environment initiated the onset of tumor immunosuppression through TREM‐1+ TAMs attracting CCR6+Foxp3+ Tregs, and TREM‐1+ TAMs endowed HCC with anti‐PD‐L1 therapy resistance.
Active drug efflux by the adenosine triphosphate-binding cassette (ABC) transporter ABCG2 is one of the common mechanisms causing multiple drug resistance in various human cancers. In the intrinsic drug resistance of hepatocellular carcinoma (HCC), the role of ABCG2 is closely associated with 'side population (SP)', a minor subset of cancer stem-like cells with unique capacity to extrude lipophilic dye Hoechst 33342 and many chemotherapeutic agents. In this study, we showed that ABCG2 was intrinsically expressed in a subgroup of HCC tissues and its expression pattern significantly influenced the levels of drug efflux from HCC cell lines. In MHCC-97L HCC cell line with intrinsic ABCG2 expression, we confirmed the importance of SP cells to the drug efflux-related chemotherapy resistance and found that the SP analysis provided an efficient method to evaluate the functional activity of ABCG2 transporter. In this cell line, we discovered that the SP proportion was modulated by the treatments of Akt signaling inhibitors and serum supplement, which led to the finding that Akt signaling was able to regulate the SP cells' efflux activity via altering the subcellular localization of ABCG2 transporter. We further demonstrated that the Akt signaling inhibition attenuated the doxorubicin efflux from MHCC-97L cells and increased the drug efficacy. Our results indicate the protective role of intrinsic ABCG2 expression in HCC cells and suggest that suppressing Akt signaling could help overcome the drug efflux by ABCG2 transporter.
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.