Recording runtime status via logs is common for almost every computer system, and detecting anomalies in logs is crucial for timely identifying malfunctions of systems. However, manually detecting anomalies for logs is time-consuming, error-prone, and infeasible. Existing automatic log anomaly detection approaches, using indexes rather than semantics of log templates, tend to cause false alarms. In this work, we propose LogAnomaly, a framework to model unstructured a log stream as a natural language sequence. Empowered by template2vec, a novel, simple yet effective method to extract the semantic information hidden in log templates, LogAnomaly can detect both sequential and quantitive log anomalies simultaneously, which were not done by any previous work. Moreover, LogAnomaly can avoid the false alarms caused by the newly appearing log templates between periodic model retrainings. Our evaluation on two public production log datasets show that LogAnomaly outperforms existing log-based anomaly detection methods.
With the growing market of cloud databases, careful detection and elimination of slow queries are of great importance to service stability. Previous studies focus on optimizing the slow queries that result from internal reasons (e.g., poorly-written SQLs). In this work, we discover a different set of slow queries which might be more hazardous to database users than other slow queries. We name such queries Intermittent Slow Queries (iSQs), because they usually result from intermittent performance issues that are external (e.g., at database or machine levels). Diagnosing root causes of iSQs is a tough but very valuable task.
This paper presents iSQUAD, Intermittent Slow QUery Anomaly Diagnoser, a framework that can diagnose the root causes of iSQs with a loose requirement for human intervention. Due to the complexity of this issue, a machine learning approach comes to light naturally to draw the interconnection between iSQs and root causes, but it faces challenges in terms of versatility, labeling overhead and interpretability. To tackle these challenges, we design four components, i.e., Anomaly Extraction, Dependency Cleansing, Type-Oriented Pattern Integration Clustering (TOPIC) and Bayesian Case Model. iSQUAD consists of an offline clustering & explanation stage and an online root cause diagnosis & update stage. DBAs need to label each iSQ cluster only once at the offline stage unless a new type of iSQs emerges at the online stage. Our evaluations on real-world datasets from Alibaba OLTP Database show that iSQUAD achieves an iSQ root cause diagnosis average F1-score of 80.4%, and outperforms existing diagnostic tools in terms of accuracy and efficiency.
The study findings revealed that copious irrigation of peritoneal cavity during laparoscopic appendectomy could decrease the incidence of postoperative intra-abdominal abscess in adult patients with complicated appendicitis. These patients also had faster postoperative recovery and lower hospital charges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.