The heat transfer and pressure drop characteristics of R290 flow boiling in a corrugated tube were investigated through computational fluid dynamics (CFD) in this study. We established a model of flow boiling in a corrugated tube with different corrugated structures (rectangular and circular corrugations) and validated the model using the Liu–Winterton and Xu–Fang empirical equations. The heat transfer coefficient (HTC) and pressure drop were obtained at a mass flow rate of 0.04–0.2 kg/s and a water inlet temperature of 310–330 K. The results show that the HTC and the drop in the pressure of the corrugated tubes both obviously increased compared with a smooth tube as the mass flow rate increased. The HTC decreased for the three tubes as the water inlet temperature increased, while the drop in pressure slightly increased for the three tubes. Moreover, the corrugated structure was found to significantly enhance the heat transfer; the heat transfer enhancement factor (E1) of the corrugated tube with the rectangular corrugations and the corrugated tube with the circular corrugations was 2.01–2.36 and 1.67–1.98, respectively. The efficiency index (I) for both the rectangular corrugated pipe and the circular corrugated pipe was greater than 1 (1.05–1.24 and 1.13–1.29, respectively). The application of corrugated tubes with round and rectangular corrugations can reduce the heat transfer area required for the exchange of heat and, thus, reduce the cost.
In this paper, the impact of different factors on the flow boiling of R290 and R22 in double-concentric pipes are investigated through CFD numerical simulations. The numerical studies are performed by changing the inner tube diameter in the range of 3 to 7 mm, the refrigerant velocity between 1 and 5 m/s, the water velocity between 1 and 10 m/s and the saturation temperature in the range of 276 to 283 K. The heat transfer coefficient (HTC), pressure drop and exergy destruction of R290 are determined. The results show that HTC, pressure drop and exergy destruction are significantly impacted by the pipe diameter and the refrigerant velocity, but slightly impacted by water velocity and saturation temperature. Moreover, the exergy loss and pressure drop of R290 are 11.8–13.3% and 4.3–10.2% lower than those of R22. R290 has a lower energy loss than R22 in the evaporation process in the double-concentric pipe. However, the HTC of R290 is 57.3–59.7% lower than that of R22. The HTC of R290 can be optimized by increasing the pipe diameter or the R290 velocity.
Double pipes are widely used in the food industry. In order to investigate the influence of different corrugation heights on the heat transfer performance of the corrugated pipe, the corrugated tubes with different sizes have been analyzed. The influence of different corrugation heights on the heat transfer coefficient and the pressure drop has been studied. An effect of the refrigerant velocity on the heat transfer coefficient and the pressure drop has been analyzed. The results show that the highest heat transfer coefficient takes place at the corrugation height 3.3mm. With an increase of the refrigerant velocity, the heat transfer coefficient and the pressure drop grow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.