LiDAR (Light Detection and Ranging) imaging based on SPAD (Single-Photon Avalanche Diode) technology suffers from severe area penalty for large on-chip histogram peak detection circuits required by the high precision of measured depth values. In this work, a probabilistic estimation-based super-resolution neural network for SPAD imaging that firstly uses temporal multi-scale histograms as inputs is proposed. To reduce the area and cost of on-chip histogram computation, only part of the histogram hardware for calculating the reflected photons is implemented on a chip. On account of the distribution rule of returned photons, a probabilistic encoder as a part of the network is first proposed to solve the depth estimation problem of SPADs. By jointly using this neural network with a super-resolution network, 16× up-sampling depth estimation is realized using 32 × 32 multi-scale histogram outputs. Finally, the effectiveness of this neural network was verified in the laboratory with a 32 × 32 SPAD sensor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.