The widespread application of TiO2 nanoparticles (NPs) as additives in foods such as gum, candy and puddings has dramatically increased the human ingestion and accumulation of these nanomaterials. Although the toxicity of TiO2 NPs has been extensively studied, their impact on gut microbiota in vivo still needs further research. In this study, TiO2 NPs with two main crystalline phases anatase and rutile were orally administrated to mice for 28 days. The dynamic influences of anatase and rutile on gut microbiota structures were investigated at doses equivalent to those consumed by people who love to eat candies. The results showed that titanium accumulated in the spleen, lung, and kidney but had no significant effects on organ histology. Gavage of rutile NPs but not anatase NPs resulted in longer intestinal villi and irregular arrangement of villus epithelial cells. Treatment with TiO2 NPs did not decrease gut microbiota diversity but shifted their structures in a time-dependent manner. Rutile NPs had a more pronounced influence on the gut microbiota than anatase NPs. The most influenced phylum was Proteobacteria, which was significantly increased by rutile but not by anatase. At the genus level, Prevotella was significantly decreased by both the TiO2 NPs, Rhodococcus was enriched by rutile NPs, and Bacteroides was increased by anatase NPs. Overall, these results suggested that chronic overconsumption of TiO2 NP-containing foods is likely to deteriorate the gastrointestinal tract and change the structures of microbiota. The crystalline phases may play an important role in mediating the intestinal impact of TiO2 NPs.
Aim: To investigate the protective effect of tribulosin, a monomer of the gross saponins from Tribulus terrestris, against cardiac ischemia/reperfusion injury and the underlying mechanism in rats. Methods: Isolated rat hearts were subjected to 30 min of ischemia followed by 120 min of reperfusion using Langendorff's technique. The hearts were assigned to seven groups: control, ischemia/reperfusion (I/R), treatment with gross saponins from Tribulus terrestris (GSTT) 100 mg/L, treatment with tribulosin (100, 10, and 1 nmol/L) and treatment with a PKC inhibitor (chelerythrine) (1 μmol/L). Infarct size was assessed by triphenyltetrazolium chloride staining. Malondialdehyde (MDA), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) contents as well as superoxide dismutase (SOD) and creatine kinase (CK) activities were determined after the treatment. Histopathological changes in the myocardium were observed using hematoxylin-eosin (H&E) staining. Apoptosis was detected with terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay. Bcl-2, Bax, caspase-3, and PKCε protein expression were examined using western blotting. Results: Tribulosin treatment significantly reduced MDA, AST, CK and LDH contents, and increased the activity of SOD. The infarct size of I/R group was 40.21% of the total area. GSTT and various concentrations of tribulosin treatment decreased the infarct size to 24. 33%, 20.24%, 23.19%, and 30.32% (P<0.01). Tribulosin treatment reduced the myocardial apoptosis rate in a concentrationdependent manner. Bcl-2 and PKCε protein expression was increased after tribulosin preconditioning, whereas Bax and caspase-3 expression was decreased. In the chelerythrine group, Bcl-2 and PKCε expression was decreased, whereas Bax and caspase-3 expression was increased. Conclusion: Tribulosin protects myocardium against ischemia/reperfusion injury through PKCε activation.
Background: Nanoparticles (NPs) administered orally will meet the gut microbiota, but their impacts on microbiota homeostasis and the consequent physiological relevance remain largely unknown. Here, we describe the modulatory effects and the consequent pharmacological outputs of two orally administered fullerenols NPs (Fol1 C 60 (OH) 7 (O) 8 and Fol113 C 60 (OH) 11 (O) 6 ) on gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.