Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
An important challenge for reaction-based fluorescent probes is that they generally require analyte consumption for fluorescence signal generation, thus creating potential perturbation of native analyte homeostasis or change of local concentrations. Herein, we reported two formaldehyde (FA) regeneration fluorescent probes, NAP-FAP-1 and NAP-FAP-2. An unprecedented regiospecific FA-induced intramolecularity strategy is implemented in the probe design, which adopts 3-(benzylamino)-succinimide as the FA-selective reaction group. The probes are able to capture the analyte molecule, induce regiospecific imide bond cleavage, and then release the captured FA molecule with simultaneous fluorescence turn-on response via a unique dual PeT/ICT quenching mechanism. The probes have shown potentials in detection, comparison, and imaging of FA levels intracellularly and inside lysosomes. These features make them useful for the study of FA homeostasis and functions in biological systems with minimal perturbation.
We reported a new approach to achieve enhanced selectivity with a drastic turn-on fluorescence response for the detection of Cys through dual intramolecular cyclization processes and dual PET and ICT quenching mechanisms by the incorporation of an acrylate and a maleimide group onto two opposite sides of a single coumarin fluorophore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.