Diffusion-driven instability is a basic nonlinear mechanism for pattern formation. Therefore, the way of population diffusion may play a determinative role in the spatiotemporal dynamics of biological systems. In this research, we launch an investigation on the pattern formation of a discrete predator-prey system where the population diffusion is based on the Moore neighborhood structure instead of the von Neumann neighborhood structure widely applied previously. Under pattern formation conditions which are determined by Turing instability analysis, numerical simulations are performed to reveal the spatiotemporal complexity of the system. A pure Turing instability can induce the self-organization of many basic types of patterns as described in the literature, as well as new spiral-spot and labyrinth patterns which show the temporally oscillating and chaotic property. Neimark-Sacker-Turing and flip-Turing instability can lead to the formation of circle, spiral and much more complex patterns, which are self-organized via spatial symmetry breaking on the states that are homogeneous in space and non-periodic in time. Especially, the emergence of spiral pattern suggests that spatial order can generate from temporal disorder, implying that even when the predator-prey dynamics in one site is chaotic, the spatially global dynamics may still be predictable. The results obtained in this research suggest that when the way of population diffusion changes, the pattern formation in the predator-prey systems demonstrates great differences. This may provide realistic significance to explain more general predator-prey coexistence.
We present in this paper an investigation on a discrete predator-prey system with Crowley-Martin type functional response to know its complex dynamics on the routes to chaos which are induced by bifurcations. Via application of the center manifold theorem and bifurcation theorems, occurrence conditions for flip bifurcation and Neimark-Sacker bifurcation are determined, respectively. Numerical simulations are performed, on the one hand, verifying the theoretical results and, on the other hand, revealing new interesting dynamical behaviors of the discrete predator-prey system, including period-doubling cascades, period-2, period-3, period-4, period-5, period-6, period-7, period-8, period-9, period-11, period-13, period-15, period-16, period-20, period-22, period-24, period-30, and period-34 orbits, invariant cycles, chaotic attractors, sub-flip bifurcation, sub-(inverse) Neimark-Sacker bifurcation, chaotic interior crisis, chaotic band, sudden disappearance of chaotic dynamics and abrupt emergence of chaos, and intermittent periodic behaviors. Moreover, three-dimensional bifurcation diagrams are utilized to study the transition between flip bifurcation and Neimark-Sacker bifurcation, and a critical case between the two bifurcations is found. This critical bifurcation case is a combination of flip bifurcation and Neimark-Sacker bifurcation, showing the nonlinear characteristics of both bifurcations.Hindawi
The nonlinear dynamics of predator-prey systems coupled into network is an important issue in recent biological advances. In this research, we consider each node of the coupled network represents a discrete predator-prey system, and the network dynamics is investigated. By applying Jacobian matrix, center manifold theorem and bifurcation theorems, stability of fixed points, flip bifurcation and Neimark-Sacker bifurcation of the discrete predator-prey system are analyzed. Via the method of Lyapunov exponents, the nonchaos-chaos transition of the coupled network along the routes to chaos induced by bifurcations is determined. Numerical simulations are performed to demonstrate the bifurcations, various attractors and dynamic transitions of the coupled network. Via comparison, we find that the coupled network exhibits far richer and more complex behaviors than single predator-prey system, including period-doubling cascades in orbits of period-2, period-4, period-8, invariant closed curves, dynamic windows for periodic orbits and invariant curves, quasiperiodic orbits, tori, and chaotic sets. Moreover, the attractors of the coupled network show more diverse and complicated structures. These results may provide a new perspective on the predator-prey dynamics in complex networks.
A spatiotemporal discrete predator-prey system with Allee effect is investigated to learn its Neimark-Sacker-Turing instability and pattern formation. Based on the occurrence of stable homogeneous stationary states, conditions for Neimark-Sacker bifurcation and Turing instability are determined. Numerical simulations reveal that Neimark-Sacker bifurcation triggers a route to chaos, with the emergence of invariant closed curves, periodic orbits, and chaotic attractors. The occurrence of Turing instability on these three typical dynamical behaviors leads to the formation of heterogeneous patterns. Under the effects of Neimark-Sacker-Turing instability, pattern evolution process is sensitive to tiny changes of initial conditions, suggesting the occurrence of spatiotemporal chaos. With application of deterministic initial conditions, transient symmetrical patterns are observed, demonstrating that ordered structures can exist in chaotic processes. Moreover, when local kinetics of the system goes further on the route to chaos, the speed of symmetry breaking becomes faster, leading to more fragmented and more disordered patterns at the same evolution time. The rich spatiotemporal complexity provides new comprehension on predator-prey coexistence in the ways of spatiotemporal chaos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.