Abstract. The influences of extrusion speed on the microstructure and tensile properties of AZ31 alloy were investigated. The results suggested that the yield and tensile strength of AZ31 alloy decrease but elongation increases with the reduction of extruded speed. High speed extrusion produces fine grains with texture of c-axis perpendicular with extruded direction. The tension deformation is dominated by slip and the formed texture is obstructive for the basal slip, and also the inhomogeneous structure formed at high speed extrusion is harmful to the ductility. Samples extruded at low speed have comparatively homogeneous and coarse microstructure. Twinning provided more tension deformation and the lattice rotation induced by twinning is favorable for the activities of new slip systems, which induced the better ductility of AZ31 alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.