Hidden Markov models (HMMs) have been recently used for fault detection and prediction in continuous industrial processes; however, the expected maximum (EM) algorithm in the HMM has local optimality problems and cannot accurately find the fault root cause variables in complex industrial processes with high-dimensional data and strong variable coupling. To alleviate this problem, a hidden Markov model-Bayesian network (HMM-BN) hybrid model is proposed to alleviate the local optimum problem in the EM algorithm and diagnose the fault root cause variable. Firstly, the model introduces expert empirical knowledge for constructing BN to accurately diagnose the fault root cause variable. Then, the EM algorithm is improved by sequential and parallel learning to alleviate the initial sensitivity and local optimum problems. Finally, the log-likelihood estimates (LL) calculated by the improved hidden Markov model provide empirical evidence for the BN and give fault detection, prediction, and root cause variable detection results based on information about the similar increasing and decreasing patterns of LL for the training data and the online data. Combining the Tennessee Eastman (TE) process and the continuously stirred tank reactor (CSTR) process, the feasibility and effectiveness of the model are verified. The results show that the model can not only find the fault in time but also find the cause of the fault accurately.
Traditional onefold data-driven methods for fault detection in complex process industrial systems with high-dimensional, linear, nonlinear, Gaussian, and non-Gaussian coexistence often have less than satisfactory monitoring performance because only a single distribution of process variables is considered. To address this problem, a hybrid fault detection model based on PCA-KPCA-ICA-KICA-BI (Bayesian inference) is proposed, taking into account the advantages of principal component analysis (PCA), kernel principal component analysis (KPCA), independent component analysis (ICA), and kernel independent component analysis (KICA) in terms of dimensionality reduction and feature extraction. Foremost, this paper proposed a nonlinear evaluation method and divided the feature variables into Gaussian linear blocks, Gaussian nonlinear blocks, non-Gaussian linear blocks, and non-Gaussian nonlinear blocks by using the Jarque–Bera (JB) test and nonlinear discrimination method. Each division was monitored by the PCA-KPCA-ICA-KICA model, and finally the Bayesian fusion strategy proposed in this study is used to synthesize the detection results for each block. The hybrid model helps in evaluating variable features and bettering detection performance. Ultimately, the superiority of this hybrid model was verified through the Tennessee Eastman (TE) process and the Continuous Stirred Tank Reactor (CSTR) process, and the fault monitoring results showed an average accuracy of 85.91% for this hybrid model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.