Surface defect detection for printed circuit board (PCB) is indispensable for managing PCB production quality. However, automatic detection of PCB surface defects is still a challenging task because, even within the same category of surface defect, defects present great differences in morphology and pattern. Although many computer vision-based detectors have been established to handle these problems, current detectors struggle to achieve high detection accuracy, fast detection speed and low memory consumption simultaneously. To address those issues, we propose a cost-effective deep learning (DL)-based detector based on the cutting-edge YOLOv4 to detect PCB surface defect quickly and efficiently. The YOLOv4 is improved upon with respect to its backbone network and the activation function in its neck/prediction network. The improved YOLOv4 is evaluated with a customized dataset, collected from a PCB factory. The experimental results show that the improved detector achieved a high performance, scoring 98.64% on mean average precision (mAP) at 56.98 frames per second (FPS), outperforming the other compared SOTA detectors. Furthermore, the improved YOLOv4 reduced the parameter space of YOLOv4 from 63.96 M to 39.59 M and the number of multiply-accumulate operations (Madds) from 59.75 G to 26.15 G.
Data mining (DM) with Big Data has been widely used in the lifecycle of electronic products that range from the design and production stages to the service stage. A comprehensive analysis of DM with Big Data and a review of its application in the stages of its lifecycle will not only benefit researchers to develop strong research themes and identify gaps in the field but also help practitioners for DM application system development. In this paper, a brief clarification of DM-related topics is presented first. A flowchart of DM and the main content of the flowchart steps are given in which commonly used data preparation and preprocessing approaches, DM functions and techniques, and performances indicators are summarized. Then, a comprehensive review covering 105 articles from 2007 to 2017 on DM or Big Data applications in the electronics industry is provided according to the flowchart from various points of view such as data handling, applications of DM, or Big Data at different lifecycle stages, and the software used in the applications. On this basis, a diagram of data content for different knowledge areas and a framework for DM and Big Data applications in the electronics industry are established. Finally, conclusions and future research directions are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.