This work develops a static analysis to create a model of the behavior of an Android application's GUI. We propose the window transition graph (WTG), a model representing the possible GUI window sequences and their associated events and callbacks. A key component and contribution of our work is the careful modeling of the stack of currently-active windows, the changes to this stack, and the effects of callbacks related to these changes. To the best of our knowledge, this is the first detailed study of this important static analysis problem for Android. We develop novel analysis algorithms for WTG construction and traversal, based on this modeling of the window stack. We also describe an application of the WTG for GUI test generation, using path traversals. The evaluation of the proposed algorithms indicates their effectiveness and practicality.
Butyrylcholinesterase (BuChE, EC 3.1.1.8) is an important pharmacological target for Alzheimer's disease (AD) treatment. However, the currently available BuChE inhibitor screening assays are expensive, labor-intensive, and compound-dependent. It is necessary to develop robust in silico methods to predict the activities of BuChE inhibitors for the lead identification. In this investigation, support vector machine (SVM) models and naive Bayesian models were built to discriminate BuChE inhibitors (BuChEIs) from the noninhibitors. Each molecule was initially represented in 1870 structural descriptors (1235 from ADRIANA.Code, 334 from MOE, and 301 from Discovery studio). Correlation analysis and stepwise variable selection method were applied to figure out activity-related descriptors for prediction models. Additionally, structural fingerprint descriptors were added to improve the predictive ability of models, which were measured by cross-validation, a test set validation with 1001 compounds and an external test set validation with 317 diverse chemicals. The best two models gave Matthews correlation coefficient of 0.9551 and 0.9550 for the test set and 0.9132 and 0.9221 for the external test set. To demonstrate the practical applicability of the models in virtual screening, we screened an in-house data set with 3601 compounds, and 30 compounds were selected for further bioactivity assay. The assay results showed that 10 out of 30 compounds exerted significant BuChE inhibitory activities with IC50 values ranging from 0.32 to 22.22 μM, at which three new scaffolds as BuChE inhibitors were identified for the first time. To our best knowledge, this is the first report on BuChE inhibitors using machine learning approaches. The models generated from SVM and naive Bayesian approaches successfully predicted BuChE inhibitors. The study proved the feasibility of a new method for predicting bioactivities of ligands and discovering novel lead compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.