Halide substitution in phenethylammonium spacer cations (X‐PEA+, X = F, Cl, Br) is a facile strategy to improve the performance of PEA based perovskite solar cells (PSCs). However, the power conversion efficiency (PCE) of X‐PEA based quasi‐2D (Q‐2D) PSCs is still unsatisfactory and the underlying mechanisms are in debate. Here, the in‐depth study on the impact of halide substitution on the crystal orientation and multi‐phase distribution in PEA based perovskite films are reported. The halide substitution eliminates n = 1 2D perovskite and thus leads to the perpendicular crystal orientation. Furthermore, nucleation competition exists between small‐n and large‐n phases in PEA and X‐PEA based perovskites. This gives rise to the orderly distribution of different n‐phases in the PEA and F‐PEA based films, and random distribution in Cl‐PEA and Br‐PEA based films. As a result, (F‐PEA)2MA3Pb4I12 (MA = CH3NH3+, n = 4) based PSCs achieve a PCE of 18.10%, significantly higher than those of PEA (12.23%), Cl‐PEA (7.93%) and Br‐PEA (6.08%) based PSCs. Moreover, the F‐PEA based devices exhibit remarkably improved stability compared to their 3D counterparts.
Low‐bandgap mixed tin–lead perovskite solar cells (PSCs) have been attracting increasing interest due to their appropriate bandgaps and promising application to build efficient all‐perovskite tandem cells, an effective way to break the Shockley–Queisser limit of single‐junction cells. Tin fluoride (SnF2) has been widely used as a basis along with various strategies to improve the optoelectronic properties of low‐bandgap SnPb perovskites and efficient cells. However, fully understanding the roles of SnF2 in both films and devices is still lacking and fundamentally desired. Here, the functions of SnF2 in both low‐bandgap (FASnI3)0.6(MAPbI3)0.4 perovskite films and efficient devices are unveiled. SnF2 regulates the growth mode of low‐bandgap SnPb perovskite films, leading to highly oriented topological growth and improved crystallinity. Meanwhile, SnF2 prevents the oxidation of Sn2+ to Sn4+ and reduces Sn vacancies, leading to reduced background hole density and defects, and improved carrier lifetime, thus largely decreasing nonradiative recombination. Additionally, the F− ion preferentially accumulates at hole transport layer/perovskite interface with high SnF2 content, leading to more defects. This work provides in‐depth insights into the roles of SnF2 additives in low‐bandgap SnPb films and devices, assisting in further investigations into multiple additives and approaches to obtain efficient low‐bandgap PSCs.
A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nature Energy.
The past decade has witnessed rapid development of perovskite solar cells (PSCs), the record power conversion efficiency (PCE) of which has been rapidly boosted from the initial 3.8% to a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.