Microhaplotypes are a new promising type of forensic genetic marker. Without the interference of stutter and high mutation rates as for STRs, and with short amplification lengths and a higher degree of polymorphism than single SNP, microhaplotypes composed of two SNPs, SNP-SNP, have a strong application potential. Currently, the most common method to detect microhaplotypes is massive parallel sequencing. However, the cost and extensive use of instruments limit its wide application in forensic laboratories. In this study, we screened 23 new SNP-SNP loci and established a new detection method by combining a multiplex amplification refractory mutation system-based PCR (ARMS-PCR) and SNaPshot technology based on CE. First, we introduced an additional deliberate mismatch at the antepenultimate base from the 3 end of primers when designing ARMS-PCR for SNP 1 (the first SNP of the SNP-SNP). Then, single base extension primers for SNaPshot assay were designed next to the position of SNP 2 (the second SNP). Finally, 15 loci were successfully built into four panels and these loci showed a relatively high level of polymorphism in the Southwest Chinese Han population. All the loci had an average probability of informative genotypes (I value) of 0.319 and a combined discrimination power of 0.999999999. Therefore, this new detection system will provide a valuable supplement to current methods.
Since the concept of microhaplotypes was proposed by Kidd in 2013, various microhaplotype markers have been investigated for various forensic purposes, such as individual identification, deconvolution of DNA mixtures, or forensic ancestry inference. In our opinion, various compound markers are also regarded as generalized microhaplotypes, encompassing two or more variants in a short segment of DNA (e.g., 200 bp). That is, a set of variants (referred to herein as multi-variants) within a certain length includes single nucleotide polymorphisms (SNP), insertion/deletion polymorphisms (Indels), or short tandem repeat polymorphisms (STRs). At present, multi-variant is mainly aimed at multi-SNPs. However, the haplotype genotyping of multi-variants relies on single-strand analysis, mainly using massively parallel sequencing (MPS). Here, we describe a method based on a capillary electrophoresis (CE) platform that can directly obtain haplotypes of individuals. Several microhaplotypes consisting of three or more Indels with different insertion or deletion lengths in the range of less than 200 bp were screened out, each of which had at least three haplotypes. As a result, the haplotype of an individual was reflected by the length of its polymorphism. Finally, we established a multiplex amplification system containing 18 multi-Indel markers that could identify haplotypes on each chromosome of an individual. The combined power of discrimination (CPD) and the cumulative probability of exclusion (CPE) were 0.999999999997234 and 0.9984, respectively.
Evaluation of the microhaplotype markers in kinship analysisMicrohaplotype markers are emerging forensic genetic markers, which may supplement existing markers. Consisting of two to four SNPs with an extent of Ͻ200 bp, microhaplotype can be genotyped through massively parallel sequencing technology. Articles that have been published suggested that microhaplotype markers have good application prospect in forensics. Multiallelic haplotype loci are potentially important in certain forensic works, as the stutter and high mutation rate of short tandem repeats and the low polymorphism of single nucleotide polymorphisms may limit the power of these two kind of regular markers. In this study, we explored the potential of 11 new microhaplotype loci in kinship analysis. The results suggested that these loci have relatively high polymorphic information in different populations worldwide and relatively high system effectiveness in the kinship analysis. Microhaplotypes have potential for forensic kinshipg analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.