IntroductionProteus mirabilis is a multi-host pathogen that causes diseases of varying severity in a wide range of mammals, including humans. Proteus mirabilis is resistant to multiple antibiotics and has acquired the ability to produce expanded spectrum of β-lactamases, leading to serious public health problems. However, the available information on P. mirabilis isolated from feces of dogs, is still poorly understood, as is the correlation between its virulence-associated genes (VAGs) and antibiotic resistance genes (ARGs).MethodIn this study, we isolated 75 strains of P. mirabilis from 241 samples, and investigated the swarming motility, biofilm formation, antimicrobial resistance (AMR), distribution of VAGs and ARGs, as well as the presence of class 1, 2, and 3 integrons in these isolates.ResultsOur findings suggest a high prevalence of intensive swarming motility and strong biofilm formation ability among P. mirabilis isolates. Isolates were primarily resistant to cefazolin (70.67%) and imipenem (70.67%). These isolates were found to carry ureC, FliL, ireA, zapA, ptA, hpmA, hpmB, pmfA, rsbA, mrpA, and ucaA with varying prevalence levels of 100.00, 100.00, 100.00, 98.67, 98.67, 90.67, 90.67, 90.67, 90.67, 89.33, and 70.67%, respectively. Additionally, the isolates were found to carry aac(6′)-Ib, qnrD, floR, blaCTX-M, blaCTX-M-2, blaOXA-1, blaTEM, tetA, tetB and tetM with varying prevalence levels of 38.67, 32.00, 25.33, 17.33, 16.00, 10.67, 5.33, 2.67, 1.33, and 1.33%, respectively. Among 40 MDR strains, 14 (35.00%) were found to carry class 1 integrons, 12 (30.00%) strains carried class 2 integrons, while no class 3 integrons was detected. There was a significant positive correlation between the class 1 integrons and three ARGs: blaTEM, blaCTX-M, and blaCTX-M-2. This study revealed that P. mirabilis strains isolated from domestic dogs exhibited a higher prevalence of MDR, and carried fewer VAGs but more ARGs compared to those isolated from stay dogs. Furthermore, a negative correlation was observed between VAGs and ARGs.DiscussionGiven the increasing antimicrobial resistance of P. mirabilis, veterinarians should adopt a prudent approach towards antibiotics administration in dogs to mitigate the emergence and dissemination of MDR strains that pose a potential threat to public health.
Anesthetics utilized for the immobilization of pregnant mammals are prone to crossing the placental barrier and cause adverse effects to the fetuses. In this study, we develop a facile method employing high performance liquid chromatography (HPLC) for the study of Telazol crossing the placental barrier of pregnant pigs. The method mainly relies on the efficient extraction strategy that includes the mobile phase composed of 10 mM ammonium acetate aqueous solution-acetonitrile (1:4, v/v). When the injected dose of Telazol is 10 mg/kg (5 mg/kg of each constituent drug, zolazepem and tiletamine), zolazepam can cross the placental barrier as it is detected in both uterus and umbilical cord with approximately the same content. Conversely, tiletamine is detected in neither uterus nor umbilical cord, indicating the absence of placental transfer of tiletamine. The different absorption rates of the two dosage-equal compounds by pigs are found to be the main cause of their different abilities to cross the placental barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.