Increase of planting density has been widely used to increase grain yield in maize. However, it may lead to higher risk of root lodging hence causing significant yield loss of the crop. The objective of this study was to investigate the effect of planting density on maize nodal root growth characteristics and to analyse their relationships to root lodging resistance. Field experiment was conducted in 2010 and 2011, using two maize varieties, Zhengdan 958 (ZD) and Xianyu 335 (XY), under three planting densities, viz., 4.50, 8.25 and 12.00 plants m-2. The results showed the root failure moment, an indicator of root lodging resistance, was significantly affected by the planting density, the maize variety, as well as the crop developmental stages, and was decreased with increasing planting density. The number and the average diameter of the roots on the upper internodes (phytomer 5 to 8) were decreased with increasing planting density, whereas the maize variety had little effects on those variables. On the contrary, the root angle was less responsive to planting density but was significantly affected by the variety being that XY had larger root angle than did ZD. The root failure moment was linearly positively correlated with the total root number and the average root diameter on the upper internodes, indicating that a greater root number and a larger root diameter are important traits for enhancing root lodging resistance in maize plants.
The purpose of this study was to investigate the effects of arbuscular mycorrhizal (AM) symbiosis on gas exchange, chlorophyll fluorescence, pigment concentration and water status of maize plants in pot culture under high temperature stress. Zea mays L. genotype Zhengdan 958 were cultivated in soil at 26/22°C for 6 weeks, and later subjected to 25, 35 and 40°C for 1 week. The plants inoculated with the AM fungus Glomus etunicatum were compared with the non-inoculated plants. The results showed that high temperature stress decreased the biomass of the maize plants. AM symbiosis markedly enhanced the net photosynthetic rate, stomatal conductance and transpiration rate in the maize leaves. Compared with the non-mycorrhizal plants, mycorrhizal plants had lower intercellular CO 2 concentration under 40°C stress. The maximal fluorescence, maximum quantum efficiency of PSII photochemistry and potential photochemical efficiency of mycorrhizal plants were significantly higher than corresponding non-mycorrhizal plants under high temperature stress. AM-inoculated plants had higher concentrations of chlorophyll a, chlorophyll b and carotenoid than non-inoculated plants. Furthermore, AM colonization increased water use efficiency, water holding capacity and relative water content. In conclusion, maize roots inoculated with AM fungus may protect the plants against high temperature stress by improving photosynthesis and water status. KeywordsArbuscular mycorrhiza . Chlorophyll fluorescence . Gas exchange . High temperature stress . Water status Abbreviations AM arbuscular mycorrhiza Ci intercellular CO 2 concentration E transpiration rate Fm maximal fluorescence Fo primary fluorescence Fv variable fluorescence Fv/Fm maximum quantum efficiency of PSII photochemistry Fv/Fo potential photochemical efficiency g s stomatal conductance Pn net photosynthetic rate PSII photosystem II RWC relative water content WHC water holding capacity WUE water use efficiency
Melatonin is involved in the regulation of carbohydrate metabolism and induction of cold tolerance in plants. The objective of this study was to investigate the roles of melatonin in modulation of carbon assimilation of wild-type wheat and the Chl b-deficient mutant ANK32B in response to elevated CO 2 concentration ([CO 2 ]) and the transgenerational effects of application of exogenous melatonin (hereafter identified as melatonin priming) on the cold tolerance in offspring. The results showed that the melatonin priming enhanced the carbon assimilation in ANK32B under elevated [CO 2 ], via boosting the activities of ATPase and sucrose synthesis and maintaining a relatively higher level of total chlorophyll concentration in leaves. In addition, melatonin priming in maternal plants at grain filling promoted the seed germination in offspring by accelerating the starch degradation and improved the cold tolerance of seedlings through activating the antioxidant enzymes and enhancing the photosynthetic electron transport efficiency. These findings suggest the important roles of melatonin in plant response to future climate change, indicating that the melatonin priming at grain filling in maternal plants could be an effective approach to improve cold tolerance of wheat offspring at seedling stage. K E Y W O R D Schlorina mutants, elevated CO 2 , low temperature, seed quality, transgenerational effect | INTRODUCTION
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.