An unconfined strongly swirled flow is investigated for different Reynolds numbers using particle image velocimetry (PIV) and Large Eddy Simulation (LES) with a Thickened Flame (TF) model. Both reacting and non-reacting flow results are presented. In the LES-TF approach, the flame front is resolved on the computational grid through artificial thickening and the individual species transport equations are directly solved with the reaction rates specified using Arrhenius chemistry. Good agreement is found when comparing predictions with the experimental data for the non-reacting cases studied. For the reacting flows, the mean axial velocity profiles are in good agreement with measurements at lower Re; at high Re, the computations show a more compact and attached flame whereas experimental observations show a slightly lifted flame. Tangential velocity predictions consistently show the peak at the flame front location while measurements show greater radial spreading of the tangential momentum. The predicted RMS fluctuations exhibit a double-peak profile with one peak in the burnt and the other in the unburnt region. The measured and predicted heat release distributions are in qualitative agreement with each other and exhibit the highest values along the inner edge of the shear layer. The precessing vortex core (PVC) is clearly observed in both the non-reacting and reacting cases. However, it appears more axially-elongated for the reacting cases.
An unconfined strongly swirled flow is investigated for different Reynolds numbers using particle image velocimetry (PIV) and large eddy simulation (LES) with a thickened-flame (TF) model. Both reacting and nonreacting flow results are presented. In the LES-TF approach, the flame front is resolved on the computational grid through artificial thickening and the individual species transport equations are directly solved with the reaction rates specified using Arrhenius chemistry. Good agreement is found when comparing predictions with the experimental data. Also the predicted root mean square (rms) fluctuations exhibit a double-peak profile with one peak in the burnt and the other in the unburnt region. The measured and predicted heat release distributions are in qualitative agreement with each other and exhibit the highest values along the inner edge of the shear layer. The precessing vortex core (PVC) is clearly observed in both the nonreacting and reacting cases. However, it appears more axially elongated for the reacting cases and the oscillations in the PVC are damped with reactions.
premixed combustion is widely used to achieve a better compromise between nitric oxide (NOx) emissions and combustion efficiency (related to CO levels). However, com-bustor operation near the lean blowout (LBO) limit can render the flame unstable and lead to oscillations, flashback, or extinction, thereby limiting the potential range of lean combustion application. Recent interest in integrated gasification combined cycle plants and syngas combustion requires an improved understanding of the role of hydrogen on the combustion process. Therefore, in the present study, combustion of pure methane and blended methane-hydrogen with hydrogen-levels up to 80 % by volume has been con-ducted in a swirl stabilized premixed combustor. Particle imaging velocimetry (PIV) and OH * chemiluminescence imaging have been used in this study. Results show that there is a single-ringed structure of internal recirculation zone (IRZ) in the non-reacting flow, while in the reacting flows, there is a more complex flow pattern with a two-celled IRZ structure in which the axial velocity near the center-axis is oriented downstream. As the equivalence ratio decreases, the width of IRZ decreases in methane flames while it increases in hydrogen-enriched flames, and the flame shape changes from conical to an elongated columnar shape, especially in hydrogen-enriched flames. There are two differ-ent modes of vortex breakdown observed, spiral mode in methane flames and bubble mode in hydrogen-enriched flames. These differences between the behavior of the methane-only and hydrogen-enriched flames lead to different behavior of the flame as it approaches the lean blowout. The differences in the mechanisms of LBO in pure methane and hydrogen-enriched premixed flames are examined and explained in the present study. [DOI: 10.1115/1.4004742
The role of hydrogen addition to swirl-stabilized methane flames is studied experimentally. Of specific interest are flame properties including flame surface density and curvature. The measurements are based on Particle Image Velocimetry (PIV), Mie-scattering and CH-chemiluminescence imaging. Identification of the flame front and its geometric characterization provides an understanding of the flame properties. Compared to the non-reacting flow, the methane flame broadens the central recirculation zone. Hydrogen enriched flames reduce the central recirculation zone and scales down the characteristic length of the flow. With hydrogen addition, the distribution of the flame front curvature is broadened and flame surface density is increased. This indicates that hydrogen addition increases the reaction front thermo-diffusive instability, causing the flame front to be more wrinkled, and increasing the flame surface area leading to an increase in the burning velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.