Helicobacter pylori infection is related to the development of gastric diseases. Various virulence factors are responsible for the pathogenic mechanisms of H. pylori infection. Our previous studies using two-dimensional gel electrophoresis showed that H. pylori thioredoxin-1 (Trx1) is overexpressed in gastric carcinomas. Here, we examined whether H. pylori Trx1 is a novel virulence factor associated with gastric tumorigenesis. We found that Trx1 expression in H. pylori isolated from gastric cancer tissues was significantly higher than that from tissues exhibiting gastritis. In the gastric epithelial cell line GES-1, infection of H. pylori with high Trx1 expression significantly induced cell apoptosis, decreased the expression of cyclin D1 and upregulated p21. However, in the gastric cancer cell line BGC823, high Trx1 expression in H. pylori significantly increased cell proliferation, and upregulated cyclin D1. The effects on cell lines were confirmed using the H. pylori Trx1-knockout mutant strain. Our observations indicate that high Trx1 expression in H. pylori is associated with gastric carcinogenesis. In H. pylori, Trx1 likely participates in the pathogenesis of gastric cancer and H. pylori expressing high levels of Trx1 would be expected to be highly pathogenic in gastric diseases in China.
Hippocampal neurogenesis-related structural damage, particularly that leading to defective adult cognitive function, is considered an important risk factor for neurodegenerative and psychiatric diseases. Normal differentiation of neurons and glial cells during development is crucial in neurogenesis, which is particularly sensitive to the environmental toxicant methylmercury (MeHg). However, the exact effects of MeHg on hippocampal neural stem cell (hNSC) differentiation during puberty remain unknown. This study investigates whether MeHg exposure induces changes in hippocampal neurogenesis and whether these changes underlie cognitive defects in puberty. A rat model of methylmercury chloride (MeHgCl) exposure (0.4 mg/kg/day, PND 5-PND 33, 28 days) was established, and the Morris water maze was used to assess cognitive function. Primary hNSCs from hippocampal tissues of E16-day Sprague-Dawley rats were purified, identified, and cloned. hNSC proliferation and differentiation and the growth and morphology of newly generated neurons were observed by MTT and immunofluorescence assays. MeHg exposure induced defects in spatial learning and memory accompanied by a decrease in number of doublecortin (DCX)-positive cells in the dentate gyrus (DG). DCX is a surrogate marker for newly generated neurons. Proliferation and differentiation of hNSCs significantly decreased in the MeHg-treated groups. MeHg attenuated microtubule-associated protein-2 (MAP-2) expression in neurons and enhanced the glial fibrillary acidic protein (GFAP)-positive cell differentiation of hNSCs, thereby inducing degenerative changes in a dose-dependent manner. Moreover, MeHg induced deficits in hippocampus-dependent spatial learning and memory during adolescence as a consequence of decreased generation of DG neurons. Our findings suggested that MeHg exposure could be a potential risk factor for psychiatric and neurodegenerative diseases.
α-mangostin has been confirmed to promote the apoptosis of MG-63 cells, but its specific pro-apoptosis mechanism in osteosarcoma (OS) remains further investigation. Here, we demonstrated that α-mangostin restrained the viability of OS cells (143B and Saos-2), but had little effect on the growth of normal human osteoblast. α-mangostin increased OS cell apoptosis by activating the caspase-3/8 cascade. Besides, α-mangostin induced endoplasmic reticulum (ER) stress and restrained the Wnt/β-catenin pathway activity. 4PBA (an ER stress inhibitor) or LiCl (an effective Wnt activator) treatment effectively hindered α-mangostin-induced apoptosis and the caspase-3/8 cascade. Furthermore, we also found that α-mangostin induced ER stress by promoting ROS production. And ER stress-mediated apoptosis caused by ROS accumulation depended on the inactivation of Wnt/β-catenin pathway. In addition, α-mangostin significantly hindered the growth of xenograft tumors, induced the expression of ER stress marker proteins and activation of the caspase-3/8 cascade, and restrained the Wnt/β-catenin signaling in vivo. In short, ROS-mediated ER stress was involved in α-mangostin triggered apoptosis, which might depended on Wnt/β-catenin signaling inactivation.
Background: Nogo-66 antagonistic peptide (NEP1-40) offers the potential to improve spinal cord injury (SCI). Objective: To explore the effect of NEP1-40 overexpression on neural stem cells (NSCs) regulating the axon regeneration of injured neurons. Methods: We isolated NSCs from brain tissues of pregnant rat fetuses and used Nestin immunofluorescence to identify them. The NEP1-40 overexpressing NSCs were constructed by transfection with the NEP1-40-overexpressing vector. The expression of NSCs differentiation associated markers including Tuj-1, GFAP, Oligo2 and MBP, were detected by RT-PCR, western blotting and immunofluorescence. NeuN immunofluorescence staining was used to measure the number of neurons. And western blotting was used to detect the phosphorylation levels of LIMK1/2, cofilin and MLC-2 and the protein levels of GAP-43, MAP-2 and APP. Results: The NEP1-40 overexpression promoted the expression level of Tuj-1, Oligo2 and MBP, and increased the number of Tuj-1, Oligo2 and MBP positive cells. NEP1-40-overexpressing NSCs (NEP-NSCs) improved NeuN positive cells of co-culture with injured neurons. And NEP-NSCs also increased the protein levels of axon regeneration indicators (GAP-43, MAP-2) and decreased APP protein level. In addition, the phosphorylation level of LIMK1/2, cofilin and MLC-2 were markedly decreased in NEP-NSCs. Conclusion: NEP1-40 overexpression enhanced the ability of NSCs differentiation into neurons and promoted axon regeneration by inhibiting the Nogo-A/NgR1 signaling pathway. This study provides an alternative gene modified transplantation NSCs for the SCI treatment.
Objective. This study was to investigate the mechanism of action of polycaprolactone/gelatin (PCL/GE) composite fiber scaffold with nerve growth factor (NGF) in the recovery of spinal cord injury (SCI). Methods. Sixty female Sprague-Dawley (SD) rats were randomly assigned to the negative control group, the positive control group, the PCL/GE scaffold group, and the collagen-binding structural domain nerve growth factor (CBD-NGF)/PCL/GE scaffold group, with 15 rats in each group. Spinal cord transection was used to establish SCI models in rats. The negative control group received sham surgery, while the other three groups were given spinal cord transection at the tenth thoracic vertebra (T10) segment. The rats in the PCL/GE scaffold group were implanted with a 4 mm PCL/GE composite fiber scaffold, and those in the CBD-NGF/PCL/GE scaffold group were implanted with a CBD-NGF/PCL/GE composite fiber scaffold. The Basso–Beattie–Bresnahan (BBB) locomotor rating scale was used to evaluate the locomotor ability of the hind limbs of the rats, and the amplitude and latency of motor evoked potentials (MEP) were recorded by neurophysiological testing at 12 w postoperatively. The levels of growth-associated protein 43 (GAP43) and neurofilament protein 200 (NF200) in the spinal cord tissue of the injury site were determined using Western Blot at 12 w after surgery. Spinal cord tissues of 2 cm within the injury site, the thoracic segment above the injury site, and the lumbar segment below the injury site were collected from the measurement of axonal transport using fluorescent retrograde tracer fluorogold, and the integrated absorbance (IA) values of FC-positive cells were calculated. Results. After treatment, the negative control rats showed normal locomotion function of the hind limb with the highest BBB scores, while the positive control rats had the lowest BBB scores and showed paraplegia. The scaffold groups exhibited better locomotion function of the hind limb and higher BBB scores than the positive controls, with greater improvement observed in the CBD-NGF/PCL/GE scaffold group ( P < 0.05 ). Compared with the positive controls, the PCL/GE scaffold group and CBD-NGF/PCL/GE scaffold group exhibited significantly shorter latency and increased amplitude of MEP, with more significant changes observed in the CBD-NGF/PCL/GE scaffold group ( P < 0.05 ). Compared with the positive control group, the GAP43 and NF200 levels of spinal cord tissue were significantly elevated in both the PCL/GE scaffold group and the CBD-NGF/PCL/GE scaffold group, and the changes were more pronounced in the CBD-NGF/PCL/GE scaffold group ( P < 0.05 ). The differences in the IA values of FC-positive cells in the spinal cord tissue of the lumbar segment below the injury site among the four groups did not come up to the statistical standard ( P > 0.05 ). Compared with the positive control group, the FC-positive cell IA values of spinal cord tissue in the thoracic segment above the injury area were markedly increased in the PCL/GE scaffold group and the CBD-NGF/PCL/GE scaffold group, and the alterations were more significant in the CBD-NGF/PCL/GE scaffold group ( P < 0.05 ). Conclusion. PCL/GE composite fiber scaffold with NGF significantly improves motor and neurological functions in the hind limbs of SCI rats and promotes the recovery of axonal transport, and the mechanism may be associated with the upregulation of GAP43 and NF200 levels in spinal cord injury site tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.