Beta zeolite with enrichment of polymorph B is successfully synthesized in the absence of fluorine species under solvent-free conditions. The phase composition of polymorph B in the sample is about...
Developing sustainable routes for the synthesis of zeolites is still a vital and challenging task in zeolite scientific community. One of the typical examples is sustainable synthesis of aluminosilicate EU-1 zeolite, which is not very efficient and environmental-unfriendly under hydrothermal condition due to the use of a large amount of water as solvent. Herein, we report a sustainable synthesis route for aluminosilicate EU-1 zeolite without the use of solvent for the first time. The physicochemical properties of the obtained EU-1 zeolite are characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA), N2 sorption, inductively coupled plasma (ICP) analysis, and solid nuclear magnetic resonance (NMR), which show the product has high crystallinity, uniform morphology, large BET surface area, and four-coordinated aluminum species. Moreover, the impact of synthesis conditions is investigated in detail. The sustainable synthesis of aluminosilicate EU-1 zeolite under solvent-free
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.