Traditional theoretical calculations, field measurements, and finite element methods sometimes fail to realize life cycle simulations of the temperature field and temperature effect of steel–concrete composite bridge deck systems. In this paper, a simulation method based on a back propagation–long short-term memory (BP-LSTM) network correlation model is proposed to predict the temperature field and temperature effect in a low-cost and highly efficient manner. A bridge was used as the engineering background according to a health monitoring system, and the finite element method based on the principle of heat transfer was used to expand the data sets. Data sets with structural, time, and environmental characteristics as the independent variables and temperature and the temperature effect as the dependent variables were formed. The correlation between the dependent and independent variables was verified using the maximal information coefficient. Thus, the BP-LSTM model was established, and the mean squared error loss function considering the time weight was designed. The data set was read in for training, verification, and testing, and a correlation model representing the relationship between the set’s independent and dependent variables was obtained with relatively high accuracy. Finally, combined with the bridge’s historical meteorological data, the established correlation model was used to simulate the bridge’s temperature field and temperature effect. The results indicated that the finite element calculation results of the structure’s temperature field based on the heat transfer principle were basically consistent with the measured results. The independent variables in the data set were non-linearly related to the dependent variables. The BP-LSTM’s prediction accuracy of the temperature field and temperature effect was above 98.8% and 94.5%, respectively, in good agreement with the target value. The variation law of the temperature field and temperature effect of the steel–concrete composite bridge deck system simulated by combining the historical meteorological statistics was in accordance with reality.
To investigate the fatigue performance of the stud connectors of steel-concrete structures, fatigue crack propagation analysis and fatigue life calculation were carried out. Firstly, the finite element model with the initial crack based on linear elastic fracture mechanics (LEFM) was established, and the parameter analysis of the stress intensity factors (SIFs) of the studs and cracks with different geometric sizes was performed. Then, the propagation with mixed-type fatigue crack and I-type fatigue crack of the stud were calculated, and the variation of effective SIFs with the fatigue crack depth was analyzed. Finally, the flow chart of stud fatigue life evaluation which considers crack initiation and stable propagation was presented, and the short stud of steel-UHPC composite structures was taken as an example and verified. The calculation results show that the fatigue crack propagation type and the initial crack have an obvious influence on the fatigue life of the stud. It has acceptable accuracy that the fatigue life of short stud in UHPC simulated by considering the crack initiation. The critical damage parameters are greatly affected by the fatigue stress amplitude, and the initiation life of fatigue crack can account for more than 90% of the total fatigue life. This paper can provide a reference for evaluating the fatigue performance of studs in steel-concrete composite structures. Accurate evaluation of the fatigue life of stud connectors conforms to the concept of sustainable development.
Objective. To study the effectiveness of medial upper arm free flap in repairing skin and soft tissue (SST) defects of the dorsum of the hand. Methods. 10 patients with SST defects on the dorsum of the hand who underwent free upper arm medial flap repair in our hospital from March 2017 to August 2018 were included in the study. Hand function, flap survival rate, wound healing, donor wound recovery, and the level of pain in the injured area were recorded before the operation, 1 month, and 6 months postoperatively. Results. The highest score in hand function was seen at the 6-month postoperative interval, followed by that at the 1-month postoperative interval. The lowest score in hand function was the preoperative score ( P < 0.05 ). All flaps were still surviving 6 months postoperatively. Recovery of the function of the donor muscle, the elbow joint, as well as wound healing, all progressed well. 6 months postoperatively, 3 patients developed numbness and stiffness of the hand, but the symptoms were relieved following treatment. Compared to the preoperative scores, the visual analogue scale (VAS) scores at the injured site 1 month and 6 months postoperatively were significantly decreased, with the 6-month postoperative score being lower than the 1-month postoperative score ( P < 0.05 ). Conclusion. The free upper arm medial flap is a good alternative for repairing skin and soft tissue defects of the dorsum of the hand with exposed phalanges, an approach that merits widespread promotion and clinical application.
An optimization method of temperature measurement point layout for steel-concrete composite bridges based on the total least squares improved piecewise Douglas–Peucker (TLS-IPDP) algorithm was proposed to solve the problem that the traditional temperature measurement data cannot reflect the actual temperature gradient (TG) due to the position of measurement points on different paths is not reasonable. The characteristic curves of TG for the most unfavorable period and annual period are extracted from the finite element model. The rationality of the proposed method is illustrated by two typical steel-concrete composite beams with steel plates and steel boxes. By improving the classical Douglas–Peucker (DP) algorithm, the TLS-IPDP algorithm proposed in this paper has a better approximation effect on the original data. Compared with the traditional temperature measuring point arrangement method, the TLS-IPDP algorithm optimized arrangement in this paper realized the measuring point arrangement with different variable spacing under different paths; the temperature gradient curve obtained was closer to the real temperature distribution, and had higher accuracy in the region with a large gradient. In addition, the proposed method has the function of manually specifying the location of feature points and reserving the required number. The optimized arrangement of measuring points can meet the requirements of measuring points number and measurement accuracy. The method presented in this paper can provide a useful reference for temperature data acquisition and sensor layout for health monitoring of steel-composite bridges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.