Abstract. was recently reported to have an oncogenic role in cervical cancer; however, the underlying mechanism remains largely unclear. The present study aimed to investigate the expression, clinical significance and regulatory mechanism of miR-92a in cervical cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data indicated that miR-92a was significantly upregulated in cervical cancer tissues compared with matched adjacent non-tumor tissues (P<0.01). High expression of miR-92a was significantly associated with poor differentiation (P=0.031), advanced clinical stage (P=0.011) and lymph node metastasis (P=0.014), but not associated with age, tumor size and distant metastasis. Knockdown of miR-92a significantly inhibited the viability and invasion of cervical cancer HeLa cells, while overexpression of miR-92a significantly enhanced HeLa cell viability and invasion (P<0.01). Luciferase reporter assay identified Dickkopf-related protein 3 (DKK3) as a target gene of miR-92a, and the protein expression of DKK3 was negatively regulated by miR-92a in HeLa cells. Furthermore, overexpression of DKK3 significantly eliminated the stimulative effects of miR-92a on HeLa cell viability and invasion (P<0.01). Additionally, DKK3 was significantly downregulated in cervical cancer tissues compared with adjacent non-tumor tissues (P<0.01), inversely correlated to the miR-92a levels in cervical cancer tissues (P<0.01). In summary, the present study indicated that miR-92a promotes cell viability and invasion in cervical cancer, partly at least, via inhibiting the protein expression of DKK3. Therefore, the present study highlights the clinical significance of the miR-92a/DKK3 axis in cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.