Air valve failure can cause air accumulation and result in a loss of carrying capacity, pipe vibration and even in some situations a catastrophic failure of water transmission pipelines. Air is most likely to accumulate in downward sloping pipes, leading to flow regime transition in these pipes. The flow regime identification can be used for fault diagnosis of air valves, but has received little attention in previous research. This paper develops a flow regime identification method that is based on support vector machines (SVMs) to evaluate the operational state of air valves in freshwater/potable pipelines using pressure signals. The laboratory experiments are set up to collect pressure data with respect to the four common flow regimes: bubbly flow, plug flow, blow-back flow and stratified flow. Two SVMs are constructed to identify bubbly and plug flows and validated based on the collected pressure data. The results demonstrate that pressure signals can be used for identifying flow regimes that represent the operational state (functioning or malfunctioning) of air valves. Among several signal features, Power Spectral Density and Short-Zero Crossing Rate are found to be the best indictors to classify flow regimes 2 by SVMs. The sampling rate and time of pressure signals have significant influence on the performance of SVM classification. With optimal SVM features and pressure sampling parameters the identification accuracies exceeded 93% in the test cases. The findings of this study show that the SVM flow regime identification is a promising methodology for fault diagnosis of air valve failure in water pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.