Hyperspectral imaging is capable of capturing information beyond conventional RGB cameras; therefore, several applications of this have been found, such as material identification and spectral analysis. However, similar to many camera systems, most of the existing hyperspectral cameras are still passive imaging systems. Such systems require an external light source to illuminate the objects, to capture the spectral intensity. As a result, the collected images highly depend on the environment lighting and the imaging system cannot function in a dark or low-light environment. This work develops a prototype system for active hyperspectral imaging, which actively emits diverse single-wavelength light rays at a specific frequency when imaging. This concept has several advantages: first, using the controlled lighting, the magnitude of the individual bands is more standardized to extract reflectance information; second, the system is capable of focusing on the desired spectral range by adjusting the number and type of LEDs; third, an active system could be mechanically easier to manufacture, since it does not require complex band filters as used in passive systems. Three lab experiments show that such a design is feasible and could yield informative hyperspectral images in low light or dark environments: (1) spectral analysis: this system’s hyperspectral images improve food ripening and stone type discernibility over RGB images; (2) interpretability: this system’s hyperspectral images improve machine learning accuracy. Therefore, it can potentially benefit the academic and industry segments, such as geochemistry, earth science, subsurface energy, and mining.
Abstract. Deriving LoD2 models from orthophoto and digital surface models (DSM) reconstructed from satellite images is a challenging task. Existing solutions are mostly system approaches that require complicated step-wise processes, including not only heuristic geometric operations, but also high-level steps such as machine learning-based semantic segmentation and building detection. Here in this paper, we describe an open-source tool, called SAT2LOD2, built based on a minorly modified version of our recently published work. SAT2LoD2 is a fully open-source and GUI (Graphics User Interface) based software, coded in Python, which takes an orthophoto and DSM as inputs, and outputs individual building models, and it can additionally take road network shapefiles, and customized classification maps to further improve the reconstruction results. We further improve the robustness of the method by 1) intergrading building segmentation based on HRNetV2 into our software; and 2) having implemented a decision strategy to identify complex buildings and directly generate mesh to avoid erroneous LoD2 reconstruction from a system point of view. The software can process a moderate level of data (around 5000*5000 size of orthophoto and DSM) using a PC with a graphics card supporting CUDA. Furthermore, the GUI is self-contained and stores the intermediate processing results facilitating researchers to learn the process easily and reuse intermediate files as needed. The updated codes and software are available under this GitHub page: https://github.com/GDAOSU/LOD2BuildingModel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.