Balancing convergence and diversity plays a key role in evolutionary multiobjective optimization (EMO). Most current EMO algorithms perform well on problems with two or three objectives, but encounter difficulties in their scalability to many-objective optimization. This paper proposes a Gridbased Evolutionary Algorithm (GrEA) to solve many-objective optimization problems. Our aim is to exploit the potential of the grid-based approach to strengthen the selection pressure towards the optimal direction while maintaining an extensive and uniform distribution among solutions. To this end, two concepts-grid dominance and grid difference-are introduced to determine the mutual relationship of individuals in a grid environment. Three grid-based criteria, i.e., grid ranking, grid crowding distance, and grid coordinate point distance, are incorporated into the fitness of individuals to distinguish them in both the mating and environmental selection processes. Moreover, a fitness adjustment strategy is developed by adaptively punishing individuals based on the neighborhood and grid dominance relations in order to avoid partial overcrowding as well as guide the search towards different directions in the archive. Six state-of-the-art EMO algorithms are selected as the peer algorithms to validate GrEA. A series of extensive experiments is conducted on 52 instances of 9 test problems taken from 3 test suites. The experimental results show the effectiveness and competitiveness of the proposed GrEA in balancing convergence and diversity. The solution set obtained by GrEA can achieve a better coverage of the Pareto front than that obtained by other algorithms on most of the tested problems. Additionally, a parametric study reveals interesting insights of the division parameter in grid and also indicates useful values for problems with different characteristics.
Abstract-It is commonly accepted that Pareto-based evolutionary multiobjective optimization (EMO) algorithms encounter difficulties in dealing with many-objective problems. In these algorithms, the ineffectiveness of the Pareto dominance relation for a high-dimensional space leads diversity maintenance mechanisms to play the leading role during the evolutionary process, while the preference of diversity maintenance mechanisms for individuals in sparse regions results in the final solutions distributed widely over the objective space but distant from the desired Pareto front. Intuitively, there are two ways to address this problem: 1) modifying the Pareto dominance relation and 2) modifying the diversity maintenance mechanism in the algorithm. In this paper, we focus on the latter and propose a shift-based density estimation (SDE) strategy. The aim of our study is to develop a general modification of density estimation in order to make Pareto-based algorithms suitable for many-objective optimization. In contrast to traditional density estimation which only involves the distribution of individuals in the population, SDE covers both the distribution and convergence information of individuals. The application of SDE in three popular Paretobased algorithms demonstrates its usefulness in handling manyobjective problems. Moreover, an extensive comparison with five state-of-the-art EMO algorithms reveals its competitiveness in balancing convergence and diversity of solutions. These findings not only show that SDE is a good alternative to tackle manyobjective problems, but also present a general extension of Paretobased algorithms in many-objective optimization.
Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. For such dynamic optimization problems (DOPs), it is difficult for a conventional SI algorithm to track the changing optimum once the algorithm has converged on a solution. In the last two decades, there has been a growing interest of addressing DOPs using SI algorithms due to their adaptation capabilities. This paper presents a broad review on SI dynamic optimization (SIDO) focused on several classes of problems, such as discrete, continuous, constrained, multi-objective and classification problems, and real-world applications. In addition, this paper focuses on the enhancement strategies integrated in SI algorithms to address dynamic changes, the performance measurements and benchmark generators used in SIDO. Finally, some considerations about future directions in the subject are given.
Abstract-In the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.