Recent advances in virtual reality (VR) technologies accelerate the creation of a flawless 3D virtual world to provide frontier social platform for human. Equally important to traditional visual, auditory and tactile sensations, olfaction exerts both physiological and psychological influences on humans. Here, we report a concept of skin-interfaced olfactory feedback systems with wirelessly, programmable capabilities based on arrays of flexible and miniaturized odor generators (OGs) for olfactory VR applications. By optimizing the materials selection, design layout, and power management, the OGs exhibit outstanding device performance in various aspects, from response rate, to odor concentration control, to long-term continuous operation, to high mechanical/electrical stability and to low power consumption. Representative demonstrations in 4D movie watching, smell message delivery, medical treatment, human emotion control and VR/AR based online teaching prove the great potential of the soft olfaction interface in various practical applications, including entertainment, education, human machine interfaces and so on.
The sense of touch is essential for locating buried objects when vision-based approaches are limited. We present an approach for tactile perception when sensorized robot fingertips are used to directly interact with granular media particles in teleoperated systems. We evaluate the effects of linear and nonlinear classifier model architectures and three tactile sensor modalities (vibration, internal fluid pressure, fingerpad deformation) on the accuracy of estimates of fingertip contact state. We propose an architecture called the Sparse-Fusion Recurrent Neural Network (SF-RNN) in which sparse features are autonomously extracted prior to fusing multimodal tactile data in a fully connected RNN input layer. The multimodal SF-RNN model achieved 98.7% test accuracy and was robust to modest variations in granular media type and particle size, fingertip orientation, fingertip speed, and object location. Fingerpad deformation was the most informative modality for haptic exploration within granular media while vibration and internal fluid pressure provided additional information with appropriate signal processing. We introduce a real-time visualization of tactile percepts for remote exploration by constructing a belief map that combines probabilistic contact state estimates and fingertip location. The belief map visualizes the probability of an object being buried in the search region and could be used for planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.