The power system on the offshore platform is of great importance since it is the power source for oil and gas exploitation, procession and transportation. Transformers constitute key equipment in the power system, and partial discharge (PD) is its most common fault that should be monitored and identified ın a timely and accurate manner. However, the existing PD classifiers cannot meet the demand for real-time online monitoring due to their disadvantages of high memory consumption and poor timeliness. Therefore, a new MobileNets convolutional neural network (MCNN) model is proposed to identify the PD pattern of transformers based on the phase resolved partial discharge (PRPD) spectrum. The model has the advantages of low computational complexity, fast reasoning speed and excellent classification performance. Firstly, we make four typical defect models of PD and conduct a test in a laboratory to collect the PRPD spectra as the data sample. In order to further improve the feature expression ability and recognition accuracy of the model, the lightweight attention mechanism Squeeze-and-Excitation (SE) module and the nonlinear function hard-swish (h-swish) are added after constructing the MCNN model to eliminate the potential accuracy loss in PD pattern recognition. The MCNN model is trained and tested with the pre-processed PRPD spectrum, and a variety of methods are used to visualize the model to verify the effectiveness of the model. Finally, the performance of MCNN is compared with many existing PD pattern recognition models based on convolutional neural network (CNN), the results show that the proposed MCNN can further reduce the number of parameters of the model and improve the calculation speed to achieve the best performance on the premise of good recognition accuracy.
The partial discharge (PD) is the most common fault of transformers, which is the main factor affecting the stable operation of transformers. Therefore, the PD should be monitored and identified timely to improve the reliability of the transformers. In this paper, a transformer PD pattern recognition algorithm based on the gray-level co-occurrence matrix of optimal parameters and support vector machine (GLCMOP-SVM) is proposed. Firstly, the GLCM of optimal parameters (GLCMOP) is proposed to be determined by calculating the proportion of the off-diagonal elements (PODE) in GLCM. The GLCMOP has the advantage of avoiding the subjectivity of parameter selection and simplifying the calculation process. Then, the phase-resolved partial discharge (PRPD) maps are used as the PD samples and are converted into the GLCMOP to extract the PD features. Moreover, the feature space of the GLCMOP is dimensionally reduced by screening out the features with high distinguishability, which can improve the generalization ability and recognition speed of the classifier. Finally, the SVM classifier is trained to sort the PD samples and recognize the PD types, which include the tip discharge, surface discharge, and air discharge PD types. Lab tests are performed to verify the accuracy and validity of the proposed methodology. Compared with the traditional algorithms based on GLCM, XGBoost (eXtreme Gradient Boosting) and artificial neural network (ANN), the performance of GLCMOP-SVM is better. The GLCMOP-SVM has less memory consumption and faster recognition speed, so it is very suitable for the online and real-time monitoring of PD occurred in the transformers.
The modular multilevel converter (MMC) station connected to the islanded renewable energy generation system needs to adopt the voltage frequency (VF) control to provide AC voltage. The single-pole converter fault will unbalance the input and output power of the DC power grid, which causes the DC voltage or the bridge arm current of the non-fault pole to exceed the protection value in the time scale of tens to hundreds of milliseconds, leading to cascading failures. To realize the fault ride-through (FRT) of single-pole converter fault, this paper analyzes the electrical characteristic of the system. Based on the analysis, the existing topology is optimized and the reasonable operation reserved margin is designed. Furthermore, the corresponding control strategy is proposed, which can not only ensure the single-pole converter block fault ride-through but can also realize economic, stable, and resilient power supply and address asymmetrical problems. Finally, the simulation model is built in PSCAD/EMTDC and the simulation results validate the effectiveness of the proposed control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.