The vibration compensation control of a hovering helicopter rescue simulator mounted on a crane beam is studied in this research. A Stewart platform is used as the motion generator of the helicopter simulation cabin and the vibration compensation device of the beam, simultaneously. This study describes how the dynamic model of the Stewart platform with consideration of the beam vibration is established. To determine the interference of the Stewart platform motion control in the special application of a large component flexible base requiring large-scale movement, a hybrid vibration controller composed of a feed-forward compensation module and a PD (proportional-derivative) feedback control module is designed. The experimental results show that this method can effectively compensate for the beam vibration and improve the accuracy of the motion reproduction of a helicopter simulation cabin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.