Depth estimation from a single image in the wild remains a challenging problem. One main obstacle is the lack of high-quality training data for images in the wild. In this paper we propose a method to automatically generate such data through Structure-from-Motion (SfM) on Internet videos. The core of this method is a Quality Assessment Network that identifies high-quality reconstructions obtained from SfM. Using this method, we collect singleview depth training data from a large number of YouTube videos and construct a new dataset called YouTube3D. Experiments show that YouTube3D is useful in training depth estimation networks and advances the state of the art of single-view depth estimation in the wild. Project website: https
Humans can perceive scenes in 3D from a handful of 2D views. For AI agents, the ability to recognize a scene from any viewpoint given only a few images enables them to efficiently interact with the scene and its objects. In this work, we attempt to endow machines with this ability. We propose a model which takes as input a few RGB images of a new scene and recognizes the scene from novel viewpoints by segmenting it into semantic categories. All this without access to the RGB images from those views. We pair 2D scene recognition with an implicit 3D representation and learn from multi-view 2D annotations of hundreds of scenes without any 3D supervision beyond camera poses. We experiment on challenging datasets and demonstrate our model's ability to jointly capture semantics and geometry of novel scenes with diverse layouts, object types and shapes. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.