Viral infections are one of the most intimidating threats to human beings. One convincing example is the coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2. Rapid, sensitive, specific and field-deployable identification of causal viruses is critical for disease surveillance, control and treatment. The shortcomings of current methods create an impending need for developing novel biosensing platforms. CRISPR-Cas systems, especially CRISPR-Cas12a and CRISPR-Cas13a, characterized by their sensitivity, specificity, high base resolution and programmability upon nucleic acid recognition, have been repurposed for molecular diagnostics, surging a new path forward in biosensing. They, as the core of some robust diagnostic tools, are revolutionizing the way that virus can be detected. This review focuses on recent advances in virus detection with CRISPR-Cas systems especially CRISPR-Cas12a/Cas13a. We started with a short introduction to CRISPR-Cas systems and the properties of Cas12a and Cas13a effectors, and continued with reviewing the current advances of virus detection utilizing CRISPR-Cas systems. The significance and advantages of such methods were then discussed. Finally, the challenges and perspectives were proposed. We tried to provide readers with a concise profile of emerging and fast-expanding CRISPR-Cas based biosensing technology, and highlighted its potential applications in a range of scenarios with regard to virus detection.
The pandemic of coronavirus disease 2019 (COVID-19) resulted from novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide concern. It is imperative to develop rapid, sensitive, and specific biosensing methods. Herein, we developed a CRISPR-Cas12a powered visual biosensor with a smartphone readout for ultrasensitive and selective detection of SARS-CoV-2. Simply, the SARS-CoV-2 derived nucleic acids triggered CRISPR-Cas12a based indiscriminate degradation of a single-stranded DNA that was supposed to link two gold nanoparticles, inducing the dis-aggregation of gold nanoparticles and thus generating observable color changes. This change can be readily distinguished by naked eyes as well as a smartphone with a Color Picker App. The proposed biosensor was successfully applied to detect SARS-CoV-2 gene in synthetic vectors, transcribed RNA and SARS-CoV-2 pseudoviruses. It rendered “single copy resolution” as evidenced by the 1 copy/μL limit of detection of pseudoviruses with no cross-reactivity. When the developed biosensor was challenged with SARS-CoV-2 clinical bio-samples, it provided 100% agreement (both positive and negative) with qPCR results. The sample-to-result time was roughly 90 min. Our work provides a novel and robust technology for ultrasensitive detection of SARS-CoV-2 that could be used clinically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.