To reduce the effects of earthquakes on the ancient Small Wild Goose Pagoda, a shape memory alloy-suspension pendulum damping system (SMA-SPDS) is developed by combining superelastic SMAs with damping pendulum theory. A MATLAB/Simulink simulation model of the SMA-SPDS is established and tested on a 1:10 scale model of the Pagoda. After verifying and comparing the simulation data with experimental results, a shock absorption analysis is performed on the prototype Pagoda. The optimum engineering design for the prototype structure of the Small Wild Goose Pagoda using SMA-SPDS for shock absorption protection in the future is put forward. The results show that the performance of the SMA-SPDS system is stable, and it can improve the integrity of the original structure of the Pagoda for better performance during earthquakes. In addition, with an increment in seismic intensity, the SMA-SPDS shows an apparent controlling effect. The Simulink simulation results of the model structure of the Small Wild Goose Pagoda are in good agreement with the test results. The Simulink simulation method can simulate the seismic response of the model structure of the Small Wild Goose Pagoda well, with and without SMA-SPDS, to obtain a more real damping effect of setting SMA-SPDS on the prototype structure; The engineering optimization of the location, quantity, and system performance parameters of SMA-SPDS in the prototype structure of the Small Wild Goose Pagoda has a remarkable effect, which can make the damping effect of SMA-SPDS reach more than 43% floor.
Deep foundation pit construction adjacent to a subway station in a soft soil area was numerically simulated with Midas GTS NX calculation software. The influence of the deep foundation pit construction on the deformation and stress of the subway station structure was studied, and the influence of the foundation pit retaining structure on the station was analyzed. The results show that during the foundation pit excavation process, the subway station slab rose as a whole and was greatly affected by the deformation of the common ground connecting wall, with the most unfavorable position changing as the excavation area changed. The excavation of foundation pits in different zones had a considerable influence on the east-to-west displacement of the common diaphragm wall outside the foundation pit. The maximum positive bending moment of the common diaphragm wall changed little, while the negative bending moment increased greatly during construction. Overall, the foundation pit excavation had a great impact on the negative moment of the common diaphragm wall. During the foundation pit excavation process, the subway station column lifted upward, and the maximum displacement, which was located at the west end of the station near the foundation pit, gradually weakened from west to east. As the foundation pit excavation process continued, the maximum axial force of the station column increased by 10.38%, and the pressure was the largest in the middle column. As the thickness of the diaphragm wall increased, the stiffness of the foundation pit retaining structure increased. After earthwork excavation and unloading, the locations in the retaining structure with high stiffnesses could resist deformations. The whole foundation pit was offset due to the high stiffness of the foundation pit retaining structure, which increased the horizontal deformation of the existing station structure. With increasing thickness, the relative horizontal deformation of the station slab gradually increased, mainly because the difference between the depths of the old and new diaphragm walls caused the embedded soil of the two same deep foundation pits to differ. Furthermore, there were great differences in the Earth pressure behind the wall. As the depth of the diaphragm wall increased, the active Earth pressure behind the diaphragm wall increased.
In this paper, the waste concrete is used to produce recycled fine aggregate, and then different mixing quantities are used to produce ordinary mortar by replacing artificial sand. The paper makes relevant studies on the influence of the recycled fine aggregate quantity on the performance of ordinary mortar. The studies show that it is feasible to produce ordinary mortar with a certain amount of recycled fine aggregate instead of artificial sand, which can meet the requirements of relevant standards, specifications and engineering.
Steel tubular pile technology is an effective method to reinforced foundation in retrofitting of existing buildings. Mirco-steel tubular pile is constructed with concrete filled steel tubular, the infilled concrete could reinforced the strength of mirco-pile and prevented the local-buckling of steel tubular. According to ANSYS software, a mode of finite element analysis was built with some function between mirco-pile and soil foundation, the mode was confirmed by some test data. The slenderness ratio and material strength were two important factors for the bearing capability of mirco-pile with concrete filled steel tubular. The bearing capability and some influence factors on concrete filled mirco-steel tubular piles were analyzed by factors analysis method. The mode of finite element analysis and factors analysis method on were applied for reinforced building foundation and referred to other application of concrete filled steel tubular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.