Pseudomonas is a diverse genus of Gammaproteobacteria with increasing novel species exhibiting versatile trains including antimicrobial and insecticidal activity, as well as plant growth–promoting, which make them well suited as biocontrol agents of some pathogens. Here we isolated strain 1257 that exhibited strong antagonistic activity against two pathovars of Xanthomonas oryzae, especially X. oryzae pv. oryzicola (Xoc) responsible for the bacterial leaf streak (BLS) in rice. The phylogenetic, genomic, physiological, and biochemical characteristics support that strain 1257 is a representative of a novel Pseudomonas species that is most closely related to the entomopathogenic bacterium Pseudomonas entomophila. We propose to name it Pseudomonas oryziphila sp. nov. Comparative genomics analyses showed that P. oryziphila 1257 possesses most of the central metabolic genes of two closely related strains P. entomophila L48 and Pseudomonas mosselii CFML 90-83, as well as a set of genes encoding the type IV pilus system, suggesting its versatile metabolism and motility properties. Some features, such as insecticidal toxins, phosphate solubilization, indole-3-acetic acid, and phenylacetic acid degradation, were disclosed. Genome-wide random mutagenesis revealed that the non-ribosomal peptide catalyzed by LgrD may be a major active compound of P. oryziphila 1257 against Xoc RS105, as well as the critical role of the carbamoyl phosphate and the pentose phosphate pathway that control the biosynthesis of this target compound. Our findings demonstrate that 1257 could effectively inhibit the growth and migration of Xoc in rice tissue to prevent the BLS disease. To our knowledge, this is the first report of a novel Pseudomonas species that displays a strong antibacterial activity against Xoc. The results suggest that the P. oryziphila strain could be a promising biological control agent for BLS.
Natural products largely produced by Pseudomonads-like soil-dwelling microorganisms are a consistent source of antimicrobial metabolites and pesticides. Herein we report the isolation of Pseudomonas mosselii strain 923 from rice rhizosphere soils of paddy fields, which specifically inhibit the growth of plant bacterial pathogens Xanthomonas species and the fungal pathogen Magnaporthe oryzae. The antimicrobial compound is purified and identified as pseudoiodinine using high-resolution mass spectra, nuclear magnetic resonance and single-crystal X-ray diffraction. Genome-wide random mutagenesis, transcriptome analysis and biochemical assays define the pseudoiodinine biosynthetic cluster as psdABCDEFG. Pseudoiodinine biosynthesis is proposed to initiate from guanosine triphosphate and 1,6-didesmethyltoxoflavin is a biosynthetic intermediate. Transposon mutagenesis indicate that GacA is the global regulator. Furthermore, two noncoding small RNAs, rsmY and rsmZ, positively regulate pseudoiodinine transcription, and the carbon storage regulators CsrA2 and CsrA3, which negatively regulate the expression of psdA. A 22.4-fold increase in pseudoiodinine production is achieved by optimizing the media used for fermentation, overexpressing the biosynthetic operon, and removing the CsrA binding sites. Both of the strain 923 and purified pseudoiodinine in planta inhibit the pathogens without affecting the rice host, suggesting that pseudoiodinine can be used to control plant diseases.
The gram‐negative plant pathogen Xanthomonas oryzae pv. oryzae (Xoo) is able to infect the host rice and effectively colonize in vascular tissues. The type IV pilus (T4P) is one of the major virulence factors playing an important role in migration of Xoo through host vascular tissues. Here, we identified PilN, a T4P alignment subcomplex protein, which is involved in regulation of swimming motility, and analysed its contribution to bacterial surface‐associated behaviours and virulence. We found that the pilN deletion mutant exhibited dramatically reduced twitching motility and scarcely detectable levels of T4P major pili PilA, as well as enhanced biofilm formation and exopolysaccharide (EPS) production. In addition, deletion of the pilN gene in Xoo resulted in impaired virulence in host rice and attenuated type III secretion system (T3SS) genes expression, which is independent of PilA assembly. Expression of the relevant pilN gene in trans was capable of restoring twitching motility and biofilm formation to the wild‐type levels in the pilN mutant but partially recovering EPS production and virulence. Moreover, the expression of trh and xrvA genes, which encode the HrpG positive regulators, was decreased in the pilN mutant. Our results suggest that PilN executes versatile functions in bacterial virulence and cell surface‐associated behaviours.
A shortage of water resources is a global issue of common concern. The contribution of the article mainly includes the following two parts. First is the study of water resources’ green utilization efficiency (WRGUE) in 30 provincial administrative units of China from 2009 to 2019 by adopting the epsilon-based measure (EBM) model with undesirable outputs, which can yield a more accurate and reasonable assessment result. In addition, the spatial Durbin model was applied to analyze the driving factors of the WRGUE, which considers the spatial effects. The results are as follows: (1) The discrepancy of the WRGUE in different regions of China is conspicuous, with the highest in East China, followed by the central and the western region, while the Northeast is the lowest. A general decrease trend from China’s southeast coastal area to the northwest inland is presented. (2) Global spatial autocorrelation analysis shows a significant positive spatial autocorrelation in the WRGUE of the 30 sample provinces. However, the local spatial autocorrelation analysis shows that the WRGUE in China presents stronger spatial homogeneity than heterogeneity. (3) The levels of technology advancement, economic development, and the Opening-up policy implementation serve as positive factors influencing the WRGUE in China. On the contrary, the urbanization level has a significant negative impact on the WRGUE. The results of this paper may have great value for sustainable water resource utilization.
Natural products (NPs) are a consistent source of antimicrobial metabolites and pesticide leads and are largely produced by Pseudomonads-like soil-dwelling microorganisms. Herein we report the isolation of Pseudomonas mosselii strain 923 from rice rhizosphere soils of paddy fields; this strain specifically inhibited the growth of rice bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) and the fungal pathogen Magnaporthe oryzae. The antimicrobial compound produced by P. mosselii 923 was purified and identified as pseudoiodinine using HRMS, NMR and single-crystal X-ray diffraction. Genome-wide random mutagenesis, transcriptome analysis and biochemical assays were used to define the pseudoiodinine biosynthetic cluster as a seven-gene operon, which was designated psdABCDEFG. Pseudoiodinine biosynthesis is proposed to initiate from GTP, which is converted into 2,5-diamino-6-(5-phospho-d-ribosylamino) pyrimidin-4(3H)-one by PsdD and converted to 5-amino-6-(5-phospho-d-ribitylamino) uracil by PsdG, followed by cyclization with glycine by PsdC/PsdE and an unknown ring contraction and two methylation reactions by PsdA and PsdF. Transposon mutagenesis indicated that pseudoiodinine biosynthesis is mediated by the global regulator GacA. Further regulation is mediated by two noncoding small RNAs, rsmY and rsmZ, that positively regulate pseudoiodinine transcription, and the carbon storage regulators CsrA2 and CsrA3, which negatively regulate expression. A 22.4-fold increase in pseudoiodinine production was achieved by optimizing the media used for fermentation, overexpressing the biosynthetic operon, and removing the CsrA binding sites. Use of P. mosselii strain 923 and purified pseudoiodinine in planta revealed that both of them inhibited X. oryzae without affecting the rice host, suggesting that pseudoiodinine can be used to control plant diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.