Adipic anhydride-plasticized soy protein (SP.A) was blended with poly(lactic acid) (PLA) at two concentrations (50/50 and 33/67) and was evaluated for use as a sustainable replacement for petroleum plastic in horticulture crop containers. Following the discovery that SP.A/PLA blends provide additional functions above that of petroleum plastic for this application, the present study evaluates the biodegradation behavior of these materials in soil and describes the substantial improvements in sustainability that result from the additional functions (intrinsic fertilizer and root improvement of plants) and the end-of-life option of biodegradation. After being buried in soil for designated time intervals, the residual degraded samples were analyzed to determine morphological and thermal properties at sequential stages of biodegradation. Samples were characterized by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The results indicated that there was a compatible system between SP.A and PLA in the melt. Incorporation of SP.A accelerated the biodegradation rate of this binary blend significantly compared with pure PLA. Prior to the degradation process, both the glass transition temperatures and melting temperatures of the blends containing SP.A decreased as the concentration of the soy protein increased. With increasing degradation time of the blended samples in soil, the glass transition temperatures increased in the early stages of biodegradation then decreased, a trend associated with the decrease in the molecular weight of the blends as a result of biodegradation. In addition, the thermal stability of blends increased gradually with increasing degradation time, suggesting faster biodegradation loss of the soy component of the SP.A/PLA blends. These results support the use of soy-based polymer blends for horticulture crop containers and provide data for evaluating their use as sustainable materials for other potential applications. Disciplines ABSTRACTOne of the most significant limitations to widespread industrial implementation of emerging bioplastics such as poly(lactic acid) and poly(hydroxyalkanoate) (PHA) is that they do not match the flexibility and impact resistance of petroleum-based plastics like poly(propylene) or highdensity poly(ethylene). The basic goal of this research is to identify alternative, affordable, sustainable, biodegradable materials that can replace petroleum-based polymers in a wide range of industrial applications, with an emphasis on providing a solution for increasing the flexibility of PHA to a level that makes it a superior material for bioplastic nursery-crop containers. A series of bio-based PHA/poly(amide) (PA) blends with different concentrations were mechanically melt processed using a twin-screw extruder and evaluated for physical characteristics. The effects of blending on viscoelastic properties were investigated using smallamplitude oscillatory shear flow experimen...
One of the most significant limitations to widespread industrial implementation of emerging bioplastics such as poly(lactic acid) and poly(hydroxyalkanoate) (PHA) is that they do not match the flexibility and impact resistance of petroleum-based plastics like poly(propylene) or high-density poly(ethylene). The basic goal of this research is to identify alternative, affordable, sustainable, biodegradable materials that can replace petroleum-based polymers in a wide range of industrial applications, with an emphasis on providing a solution for increasing the flexibility of PHA to a level that makes it a superior material for bioplastic nursery-crop containers. A series of bio-based PHA/poly(amide) (PA) blends with different concentrations were mechanically melt processed using a twin-screw extruder and evaluated for physical characteristics. The effects of blending on viscoelastic properties were investigated using small-amplitude oscillatory shear flow experiments to model the physical character as a function of blend composition and angular frequency. The mechanical, thermal, and morphological properties of the blends were investigated using dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and tensile tests. The complex viscosity of the blends increased significantly with increasing concentration of PHA and reached a maximum value for 80 wt % PHA blend. In addition, the tensile strength of the blends increased markedly as the content of PHA increased. For blends containing PA at >50 wt %, samples failed only after a very large elongation (up to 465%) without significant decrease in tensile strength. The particle size significantly increased and the blends became more brittle with increasing concentration of PHA. In addition, the concentration of the PA had a substantial effect on the glass relaxation temperature of the resulting blends. Our results demonstrate that the thermomechanical and rheological properties of PHA/PA blends can be tailored for specific applications, and that blends of PHA/PA can fulfill the mechanical properties required for flexible, impact-resistant bio-based nursery-crop containers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.