Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system.
The use of coumarin
caged molecules has been well documented in
numerous photocaging applications including for the spatiotemporal
control of Cre-estrogen receptor (Cre-ERT2) recombinase activity.
In this article, we report that 4-hydroxytamoxifen (4OHT) caged with
coumarin via a conventional ether linkage led to
an unexpected photo-Claisen rearrangement which significantly competed
with the release of free 4OHT. The basis for this unwanted reaction
appears to be related to the coumarin structure and its radical-based
mechanism of uncaging, as it did not occur in ortho-nitrobenzyl (ONB) caged 4OHT that was otherwise linked in the same
manner. In an effort to perform design optimization, we introduced
a self-immolative linker longer than the ether linkage and identified
an optimal linker which allowed rapid 4OHT release by both single-photon
and two-photon absorption mechanisms. The ability of this construct
to actively control Cre-ERT2 mediated gene modifications was investigated
in mouse embryonic fibroblasts (MEFs) in which the expression of a
green fluorescent protein (GFP) reporter dependent gene recombination
was controlled by 4OHT release and measured by confocal fluorescence
microscopy and flow cytometry. In summary, we report the implications
of this photo-Claisen rearrangement in coumarin caged compounds and
demonstrate a rational linker strategy for addressing this unwanted
side reaction.
We report an active delivery mechanism targeted specifically to Gram(−) bacteria based on the photochemical release of photocaged ciprofloxacin carried by a cell wall-targeted dendrimer nanoconjugate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.