it is well recognized that the genetic variants VKORC1-1639, CYP2C9*2, and CYP2C9*3 contribute to warfarin dose response. This has led to warfarin dosing algorithms that include these polymorphisms and explains between 47% and 56% of variability in dose in Caucasians. however, these polymorphisms explain significantly less of the variance in dose among African Americans. In order to identify novel variations that affect warfarin dose in African Americans, we used a targeted resequencing strategy that examined evolutionarily conserved sequences and regions of putative transcriptional binding. Through ethnicity-specific warfarin dose model building in 330 African Americans, we identified two novel genetic associations with higher warfarin dose, namely, VKORC1-8191 (rs61162043, P = 0.0041) and 18786 in CYP2C9 (rs7089580, P = 0.035). These novel finds are independent of the previous associations with these genes. Our regression model, encompassing both genetic and clinical variables, explained 40% of the variability in warfarin dose in African-American subjects, significantly more than any model thus far.
Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.
Myeloid translocation genes (MTGs) are transcriptional corepressors implicated in development, malignancy, differentiation, and stem cell function. While MTG16 loss renders mice sensitive to chemical colitis, the role of MTG16 in the small intestine is unknown. Histological examination revealed that Mtg16(-/-) mice have increased enterocyte proliferation and goblet cell deficiency. After exposure to radiation, Mtg16(-/-) mice exhibited increased crypt viability and decreased apoptosis compared with wild-type (WT) mice. Flow cytometric and immunofluorescence analysis of intestinal epithelial cells for phospho-histone H2A.X also indicated decreased DNA damage and apoptosis in Mtg16(-/-) intestines. To determine if Mtg16 deletion affected epithelial cells in a cell-autonomous fashion, intestinal crypts were isolated from Mtg16(-/-) mice. Mtg16(-/-) and WT intestinal crypts showed similar enterosphere forming efficiencies when cultured in the presence of EGF, Noggin, and R-spondin. However, when Mtg16(-/-) crypts were cultured in the presence of Wnt3a, they demonstrated higher enterosphere forming efficiencies and delayed progression to mature enteroids. Mtg16(-/-) intestinal crypts isolated from irradiated mice exhibited increased survival compared with WT intestinal crypts. Interestingly, Mtg16 expression was reduced in a stem cell-enriched population at the time of crypt regeneration. This is consistent with MTG16 negatively regulating regeneration in vivo. Taken together, our data demonstrate that MTG16 loss promotes radioresistance and impacts intestinal stem cell function, possibly due to shifting cellular response away from DNA damage-induced apoptosis and towards DNA repair after injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.