Background. Excessive or insufficient intake of methionine (Met) causes neuronal dysfunction, neurodegeneration, cerebrovascular dysfunction, vascular leakage, and short-term memory loss, which result in the occurrence of Alzheimer’s disease- (AD-) like symptoms. Objective. To determine the relationship between high methionine diets (HMD) induced AD-like symptoms and 5-methylcytosine (5-mC) level. Methods. C57BL/6J mice were randomly divided into two groups: the control group (Maintain diets) and the model group (2% HMD). Mice were fed with 2% HMD for 9 weeks. Animals were weighed and food intake was recorded weekly. Open field test, nesting ability test, Y maze test, new object recognition test, and Morris water maze test were used to detect the motor, learning, and memory ability. Hematoxylin-eosin (HE) staining was used to observe the damage of cells in hippocampus and cortex. Immunofluorescence (IF) staining was used to detect the expression and distribution of amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and 5-methylcytosine (5-mC) in hippocampus and cortex. Western blotting (WB) was used to determine the expression of Aβ and DNA methyltransferases- (DNMTs-) related proteins in the cortex. Enzyme-linked immunosorbent assay (ELISA) was performed to detect homocysteine (Hcy) level (ELISA). Results. Feeding of HMD decreased the body weight and food intake of mice. Behavioral testing revealed that HMD caused learning, memory, and motor ability impairment in the mice. HE staining results showed that HMD feeding caused damage of hippocampal and cortical neurons, along with disordered cell arrangement, and loss of neurons. Furthermore, HMD increased the contents of Aβ1-40, Aβ1-42, and 5-mC in the hippocampus and cortex. WB results showed that HMD increased the expression of Aβ production-related proteins, such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1), and decreased the expression of Aβ metabolism-related protein in the cortex, including insulin-degrading enzyme (IDE) and neprilysin (NEP). Additionally, the decreased expression of DNA methyltransferase1 (DNMT1) was observed in HMD-treated mice, but there was no significant change of DNMT3a level. ELISA results showed that HMD increased the levels of Hcy in serum. Conclusion. Our result suggested that the HMD can cause neurotoxicity, leading to AD-like symptoms in mice, which may be related to 5-mC elevated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.